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Abstract. Object detectors are core components of multimodal models,
enabling them to locate the region of interest in images which are then
used to solve many multimodal tasks. Among the many extant object de-
tectors, the Bottom-Up Faster R-CNN [39] (BUA) object detector is the
most commonly used by the multimodal language-and-vision community,
usually as a black-box visual feature generator for solving downstream
multimodal tasks. It is trained on the Visual Genome Dataset [25] to de-
tect 1600 different objects. However, those object categories are defined
using automatically processed image region descriptions from the Visual
Genome dataset. The automatic process introduces some unexpected
near-duplicate categories (e.g. ‘watch’ and ‘wristwatch’, ‘tree’ and ‘trees’,
and ‘motorcycle’ and ‘motorbike’) that may result in a sub-optimal rep-
resentational space and likely impair the ability of the model to classify
objects correctly. In this paper, we manually merge near-duplicate labels
to create a cleaner label set, which is used to retrain the object detec-
tor. We investigate the effect of using the cleaner label set in terms of:
(i) performance on the original object detection task, (ii) the properties
of the embedding space learned by the detector, and (iii) the utility of
the features in a visual grounding task on the Flickr30K Entities dataset.
We find that the BUA model trained with the cleaner categories learns a
better-clustered embedding space than the model trained with the noisy
categories. The new embedding space improves the object detection task
and also presents better bounding boxes features representations which
help to solve the visual grounding task.

Keywords: Object Detection, Visual Genome, Bottom-Up, Data Clean-
ing, Label Cleaning, Object Ontology

1 Introduction

Object detection is the task of locating and classifying the objects depicted in
an image [32]. This is a core task in the field that is used whenever there is the
need to localize and recognize objects in images, such as when an autonomous
driving car needs to recognize road signs, people, and objects in the streets.
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Beyond computer vision, object detectors are the cornerstone of multimodal
vision and language (V&L) tasks, which require jointly reasoning over visual
and linguistic input. Indeed, in order to reason about the objects in the image,
it is first necessary to identify them. Examples of such tasks are the referring
expression recognition and visual grounding [42, 7, 63, 17, 40, 22], visual ques-
tion answering [2, 43, 68], visual-textual-knowledge entity linking [13, 11, 12] and
image-text retrieval [34, 24, 66, 29, 55]. In these V&L tasks, the object detector
is used as a static black-box feature extractor. Therefore, it needs to be accurate
and comprehensive in order to support the downstream multimodal tasks.

The Bottom-Up Faster R-CNN [1] (BUA) object detector is one of the most
commonly-used black box object detectors in the field. Within the V&L liter-
ature, it is the defacto standard feature extractor used to represent the visual
input [16]. BUA is pretrained on the Visual Genome dataset [25] to detect 1600
objects, e.g. “chair”, ”horse”, “woman”, and also to predict their attributes,
e.g. “wooden”, “brown”, “tall”. Both the category and attribute set are derived
from the freely annotated region descriptions in the Visual Genome dataset,
rather than using pre-defined categories like in ImageNet [10] or COCO [31].
Anderson et al. did attempt to filter the categories and attributes to prevent
near-duplicates, however, the resulting 1600 categories are still imperfect. There
are synonymous categories (“wrist watch”, “wristwatch”), categories represent-
ing single and plurals of the same concepts (“apple”, “apples”), ambiguous,
difficult to differentiate, categories (“trousers”, “slacks”, “chinos”, “lift”), and
categories that actually represent attributes such as “yellow” or “black”. We
argue that having to predict these noisy categories is likely to prevent the object
detector from supporting downstream tasks well.

In this work, we propose a new set of categories that can be used to train
the BUA object detector on the Visual Genome dataset. The new set is the
result of a cleaning process performed manually by a native English speaker.
Starting from the original 1600 noisy categories, the ambiguous categories were
merged to build the final set of 878 clean categories. We then use these clean cat-
egories to re-train the BUA object detector. In addition to evaluating its object
detection performance, we analyze the model’s feature embedding space, and
evaluate the benefits of using its features in a downstream referring expression
comprehension grounding task. In our experiments, the BUA model trained with
the cleaned categories detects objects better, and, examining its feature space
representation, we find out that it learns a better-clustered embedding space
than the model trained with the original noisy categories. The new embedding
space produces better bounding boxes feature representations, which in turn can
improve performance on a downstream visual-textual grounding task.

The contributions of this paper are summarized as follows:

1. starting from the 1600 noisy categories developed by [1], we propose a cleaner
set of 878 categories with less noise and fewer near-duplicates;

2. we show that a BUA detector trained on these cleaned categories improves
object detection performance and produces a better visual embedding space
compared to using the original noisy categories;
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3. finally, we show that using the new detector as a black-box feature extractor
can improve performance on a downstream visual-textual grounding task.

2 Related Work

This paper relates to (a) work that adopts the Bottom-Up model [1] for the
detection of objects depicted in images, especially for multimodal downstream
tasks, and (b) work that addresses learning neural networks with noisy labels.
We describe the Bottom-Up model itself in more detail in Section 3.

2.1 Bottom-Up for Object Detection

Many object detectors exist [39, 67, 9, 49, 56, 59, 57, 64, 58, 50], that differ accord-
ing to their ability to detect objects in the image, the computing power required
for their use, and their ability to recognize a large set of different objects[1, 38].
An object detector should be able to identify many different objects [62] and
classify them correctly. The appeal of BUA features lies in part in the large
number of object categories. Nevertheless, the increase in the number of objects
to be recognized leads to a more challenging classification problem.

Starting with [1], in which the extracted object detector bounding boxes
were used as input to a Visual Question Answering (VQA) model, much work
on VQA adopted the BUA model as object detector [6, 61, 26, 5, 45, 69, 20, 54].
BUA features have also been used for the Referring Expression Comprehension
task [62, 41, 23, 53, 52, 23]. In addition, many recent large pretrained Vison and
Language models use BUA features as their visual representations [27, 47, 30,
48, 33, 15, 4]. These models are used as the starting point for a wide variety of
multimodal tasks, including image description, VQA, natural language visual
reasoning, referring expression comprehension, etc [35, 21, 16].

All these works directly depend on the quality of the objects detected by the
BUA model. Incorrect identification and/or classification of objects may have
major repercussions in the resolution of downstream tasks, making it important
to analyze in more detail the labels used to train the BUA model.

2.2 Noisy Label Sets

This work, aiming to improve data quality by improving label quality, is re-
lated to the branch of research area addressing noisy label effects during neural
network training. However, most of this work addresses the problem of badly
labeled data, i.e. noise at the instance level (see [46] for a recent survey).

We are interested in the problem of bad or noisy labels, rather than noisy
data. [36] show that their framework for estimating noise in data labelling can
also identify ‘ontological issues’ with the labels themselves. Removing duplicate
labels during training improves performance on ImageNet classification, in line
with the object detection improvement we find in this paper. [3] identify and
correct label issues in ImageNet for better, more robust model evaluation and
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comparison; removing ‘arbitrary’ label distinctions ensures models are not re-
warded for overfitting to spurious noise. [51] aim to discover a ‘basic level’ label
set, i.e. the labels corresponding to the human default or basic level categories,
by merging labels that are often confused. They find that training an image clas-
sifier on these categories can improve downstream image captioning and VQA.

3 Recap: Bottom-Up Faster R-CNN

The Bottom-Up [1] model is based on the Faster R-CNN [39] object detector
devised to recognize instances of objects belonging to a fixed set of pre-defined
categories and localize them with bounding boxes. Faster R-CNN initially uses
a vision backbone, such as ResNet [18] or a VGGNet [44], to extract image fea-
tures from the image. Then Faster R-CNN applies a Region Proposal Network
(RPN) over the input image, that predicts a set of class-agnostic bounding box
proposals for each position in the image. The RPN aims to detect all the bound-
ing boxes that contain an object, regardless of what the object is. Then, for each
detected bounding box proposal, Faster R-CNN predicts a class-aware proba-
bility score and a refinement of the bounding box coordinates to better delimit
the classified object. The Faster R-CNN multi-task loss function contains four
components, defined over the classification and bounding box regression outputs
for the Region Proposal Network and the final bounding boxes refinement.

The BUA object detector initializes its Faster R-CNN backbone weights from
a ResNet-101 [19] model pre-trained on the ImageNet [10] dataset for solving
the image classification task. The model is trained on the Visual Genome [25]
dataset to predict 1600 different objects. Since the Visual Genome dataset also
annotates a set of attributes for each bounding box in addition to the category
it belongs to, the BUA model adds an additional trainable module for predicting
attributes (in addition to object categories) associated with each object localized
in the image. For this reason, the BUA model adds a multi-class loss component
to the original Faster R-CNN losses to train the attribute predictor module.

The 1600 categories used to train the BUA model were set by [1]. The Visual
Genome dataset annotations consist of image regions associated with region de-
scriptions (natural language strings) and the attributes of the object depicted in
it. [1] extract category labels from the region descriptions, but their procedure
is underspecified (for example, it is unclear if they used a part-of-speech tag-
ger to extract nouns and adjectives as labels for objects and attributes). They
filtered the original set of 2500 object strings and 1000 attribute strings based
on object detection performance, resulting in a set of 1600 categories and a
set of 400 attributes. However, the remaining set of categories is still noisy. It
contains plurals and singular of the same concepts, such as “dog” and “dogs”,
overlapping categories such as “animal”, “cat”, and “dog”. Moreover, it con-
tains near-duplicate categories such as “motorcycle” and “motorbike”, unhelp-
ful distinctions like “lady” and “woman”, labels representing attributes such as
“yellow” and abstract notions like “front”. These noisy labels may result in a
sub-optimal representational space and likely impair the ability of the model to
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classify objects correctly. Given that several labels equivalently express the same
meaning, whenever the model needs to predict a category for an object appear-
ing in the image, the model needs to split its predicted probabilities among all
equivalent categories. This probability split occurs not only when two or more
categories express the same meaning (e.g. “hamburger” and “burger”) but also
when the meanings expressed by the categories overlap substantially, such as the
categories “pants”, “trousers”, and “slacks”.

4 Cleaning the Visual Genome Category Set

In this paper, we propose a new set of categories to use for training the BUA
object detector. This new label set is the outcome of a cleaning process applied
to the 1600 original categories by the authors of this paper, which include native
English speakers. This process aimed to combine ambiguous and low-frequency
categories together. During the cleaning process, the categories were joined to-
gether according to the following principles:

1. Plurals: singular and plurals categories, such as “giraffe” and “giraffes”. In
most instances, these annotations represent the same concept and should be
treated as the singular category. This led to 258 category merges.

2. Tokenization: categories with and without spaces, such as “wrist watch”
and “wristwatch”, should be treated as the same category. This resulted in
29 category merges.

3. Synonyms, such as “microwave” and “microwave oven”, “hamburger” and
“burger”, express similar concepts with minor differences that are usually
not important. Often, as in “microwave oven”, these are compound phrases
that can be identified automatically, though it is important to verify them
manually (e.g. “surf” and “surf board” should not be merged).

4. Over-specific categories with substantial annotator disagreement where
several words are used interchangeably, e.g. “pants”, “trouser”, “sweatpants”,
“jean”, “jeans”, and “slacks”.

However, during the cleaning process, it was not always clear when to merge the
categories since: (i) some categories are inherently ambiguous, such as “home”;
(ii) some categories are abstract and don’t have the meaning of a concrete ob-
ject, such as “items”, “front”, “distance”, “day”; (iii) some categories represent
attributes rather than objects, such as “yellow” and “black”.

For some ambiguous labels like ‘lot’ or ‘lift’, visual inspection of the labelled
images showed that within VG, these labels were used mostly to refer to one
concept: “lot” usually showed car parking and was merged with “parking lot”,
similarly “lift” was merged with “ski lift”. In other cases, no single meaning
predominated and these labels were left un-merged (e.g. ‘stand’ was not merged
with either ‘baseball stand’ nor ‘tv stand’). The abstract and attribute categories
were also left as they were. In this way, the adopted cleaning process defines a
surjective function that maps the original labels set to cleaner labels set.
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Fig. 1: LogLog plots of objects frequencies for each category. The frequencies
are calculated on the training set annotations. The distribution of the original
categories is in blue, and the new categories are in orange. The cleaning process
did not generate high-frequency categories and at the same time removed many
low-frequency categories.

The cleaning process produces a new set of 878 categories from the original
1600 categories (Appendix 1). Figure 1 shows frequencies of objects appearing
in the Visual Genome training split, where objects are either labeled according
to the original label set (in blue) or the new cleaned label set (in orange). The
new labels lead mostly to the removal of many low-frequency categories in the
long tail, rather than creating new very frequent categories.

5 Experimental Setup

We train a BUA object detector matching the procedure of Anderson et al. [1],
except that we use the new clean categories as object labels instead of the original
noisy categories.

5.1 Datasets and Evaluation Metrics

Following [1], the training and test data for the models is the Visual Genome
(VG) dataset [25]. It is a multipurpose dataset that contains annotations of
images in the form of scene graphs that form fine-grained descriptions of the
image contents. It supplies a set of bounding boxes appearing in the image, with
labels such as objects and persons, together with their attributes, such as color
and appearance, and the relations between them. The original VG labels were
converted to object labels by [1], as described in Section 3. We note here that our
BUA model is trained only using the VG training split, unlike some pre-trained
models available, e.g. in the MILVLG repository, which use both training and
validation splits for training.

To assess the object detectors’ performance, we use the Mean Average Pre-
cision (AP) metric, which is the standard metric for measuring the accuracy of
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object detectors such as Faster R-CNN [39]. All evaluation results presented in
this work are obtained on the VG test split. Average precision uses a Intersection
over Union threshold of 0.5 to determine whether the predicted bounding box is
sufficiently similar to the gold region. We distinguish between ‘macro’ and ‘mi-
cro’ (also known as ‘weighted’) AP: MacroAP weights each category uniformly
(macro-averaging class-wise precision) while MicroAP weights each category by
the number of items in the category (equivalent to micro-averaging over all items,
regardless of class). MacroAP will emphasize the effect of small categories, while
MicroAP will be dominated by the most frequent categories.

Precision is indirectly affected by the number of categories in the label set:
e.g. a random baseline over 100 categories will perform worse than a baseline
over 10 categories. Since our objective in this paper is to compare models with
different numbers of categories, this is an unavoidable confound. To mitigate
against it, for the original model, which predicts labels in the original label set,
we map its predictions to the clean label set. For example, if the model predicts
‘motorcycle’ in the original label set, this prediction gets mapped to the same
category ID as the model’s ‘motorbike’ predictions, because these two labels have
been collapsed in the clean label set. This results in mapped predictions with the
same number of categories as the clean label set predictions, which means that
comparison between label sets is fairer. However, this procedure also removes all
errors due to confusing the two labels that have been merged in clean (e.g. if the
original gold label for the ‘motorcycle’ prediction was ‘motorbike’, this incorrect
prediction is now counted as correct), which makes it a very strict evaluation.

5.2 Random Baseline

We also compare against a BUA detector trained with a randomly merged cat-
egory set. The randomly merged set was created by randomly selecting pair of
categories in the original set to combine until we reached the same number of
categories adopted in the clean set (i.e. 878). This procedure leads to a distribu-
tion of category sizes that is very similar to the clean label set, see Appendix 1.
However, the randomly merged categories will include semantically very distinct
objects, e.g. bananas and motorcycles are in the same category. This allows us to
separate the effect of having cleaner categories from the effect of simply having
fewer categories.

5.3 Implementation Details

For the development of this work, we used the code available in the MILVLG5

repository, which is a Pytorch implementation of the original Caffe6 model. In
particular, the MILVLG code allows to train, evaluate, and extract bounding
boxes from images using both the Detectron2 framework7 as well as the original

5 https://github.com/MILVLG/bottom-up-attention.pytorch
6 https://github.com/peteanderson80/bottom-up-attention
7 https://github.com/facebookresearch/detectron2
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Table 1: BUA object detection results on the Visual Genome dataset. The
model trained on the clean categories, “BUA Clean”, achieves better object
detection performance than the model trained on the original categories. “BUA
Original→Clean-878” and “BUA Original→Random-878” are results from mod-
els trained on the original categories whose predictions are mapped to clean and
random label set respectively, to match label set size (878 labels in both cases)

Visual Genome (%)

Model Implementation MacroAP50↑ MicroAP50↑

BUA Original Caffe 9.37 15.14
BUA Original PyTorch 9.10 15.93

BUA Original→Clean-878 PyTorch 10.72 17.34
BUA Clean PyTorch 11.01 17.60

BUA Original→Random-878 PyTorch 9.49 15.79
BUA Random PyTorch 9.46 15.61

Caffe model weights. When not explicitly indicated, we use BUA implemented
with Detectron2. Between 10 and 100 bounding boxes are extracted for each
image in input. We use the default MILVG hyper-parameters, apart from setting
the batch size to 8, and training only on the training data split. We did not re-
tune the model hyper-parameters when training on the new label set and used
the same default hyper-parameters from the model trained on the original 1600
categories. The object detectors are trained for 180K iterations. All experiments
were performed in a distributed parallel system using a V100 32GB GPU.8

6 Experiments

Our experiments compare BUA models trained on the new smaller label set
with the original BUA model using the original label set. We compare these
two models in terms of performance on the original object detection task, the
properties of the embedding space learned by the detector, and the utility of the
features in a visual grounding task on the Flickr30K Entities dataset. We expect
the removal of label ambiguity in the new label set to lead to better performance
on object detection and visual grounding.

6.1 Object Detection

We test object detection on the Visual Genome test set: see Table 1. The model
trained on the new labels, BUA Clean, outperforms the BUA Original model by
nearly two points on macro and micro AP.

To check how much of this improvement is due to simply having a smaller
label set, we also compare both against the random (i.e. BUA Random) baseline

8 https://github.com/drigoni/bottom-up-attention.pytorch
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Fig. 2: KDE plots for the probability values of the argmax category predicted by
the model. The plots on the left consider all the categories, the plots in the center
consider just the categories that we did not merge during the cleanup process
(i.e. “Untouched”), and the last plots on the right consider only the merged
categories. Overall, the cleaned categories lead to higher confidence values than
the original categories.

(where categories were iteratively merged to the same number of labels as the
clean set) and against the same original predictions, but with predicted labels
mapped to the clean set (e.g., predictions for ‘egg’ and ‘eggs’ are mapped to the
same label, as in the clean set). The BUA Random results are slightly worse
than the BUA Original model, indicating that fewer labels on their own are not
enough to micro or macro AP. Mapping the original predictions to the new la-
bels improves both metrics, indicating that many of the mistakes in the BUA
Original model are due to confusion between labels that are merged in the clean
set. However, performance does not reach the level of BUA Clean model, demon-
strating that using better labels at training time is important. Since we see this
improvement in both micro and macro AP, the new labels do not only improve
frequent categories (reflected in MicroAP) or infrequent categories (MacroAP).

Figure 2 shows how noise in the category set affects the prediction confidence
of the model. By ‘prediction confidence’, we mean the probability assigned to
the argmax category predicted by the model when it detects an object. These
maximum probability detections play an important role in determining which
detections to use in downstream tasks.9 We find that the BUA detector trained
on the cleaned categories produces more high confidence predictions than a de-
tector trained on the original noisy categories. Closer inspection shows that this
difference is due to higher confidence when predicting objects in the new merged
clean categories. This confirms our hypothesis that the original categories result
in probability mass being split across multiple synonymous labels, and this issue
is resolved by the new cleaned categories. We do not see the same behavior with
random categories (Appendix 2).

These results support the hypothesis that noise and repetition in the original
label set make it difficult to learn good distinguishing features between cate-

9 In V&L pretraining, it is common to use the (10-100) most confident regions [16]
detected in each image.
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gories. They also imply that it is necessary to retrain the object detector on
cleaner labels to fully improve its detection capabilities on downstream tasks.

Our experiments also show differences in the performance of the BUA Orig-
inal model as implemented in Caffe and Pytorch, despite the fact that Pytorch
is meant to be a reimplementation of the Caffe version. We will see similar be-
haviour in the visual grounding experiment later on, where the difference between
the two implementations is more substantial.

6.2 Feature Space Analysis

In this section, we attempt to characterise the differences in feature space, given
features from a model trained with the clean label (i.e. Clean) set vs the original
model (i.e. Original). The features are from the ResNet-101’s pool5 flat layer;
these are the most common representation used for downstream tasks (e.g. visual
grounding). For each image in the VG validation set, the features corresponding
to the bounding box proposals are extracted. We test two confidence thresholds:
with th=0.05, the models return approximately 280,000 bounding box feature
vectors, whereas with th=0.2, we only evaluate approximately 100,000 features.
(Different models return slightly different but comparable numbers of proposals.)

In order to be useful for downstream tasks, we expect that bounding boxes
that contain similar objects should have similar features and the same predicted
categories. We test this using nearest neighbors and cluster analyses.

Nearest Neighbors The local structure of the feature space can be examined
using a nearest neighbors analysis: for each point in the embedding space (i.e.
bounding box features), we calculate the proportion of K (with K = 1, 5, and
10) nearest neighbors that share the same category. This analysis is not affected
by the different number of labels in the several sets and therefore it allows us
to fairly compare models’ embedding spaces. We expect the embedding space of
the model trained with cleaner categories to be clustered better than the other
embedding spaces. In other words, we expect that each point has more neighbors
that share the same category when using cleaned labels.

Table 2 reports the results of this analysis, considering features extracted with
different threshold values (i.e. 0.05 and 0.2) and considering either all features
or only features from different images (“Filtered Neighbors”). This step removes
features that might be from highly overlapping regions of the same image.

Overall, as expected, the bounding boxes extracted by the model trained on
the cleaned label set have higher proportions of nearest neighbors that share
the same category. This difference is substantial and consistent across different
values of K, thresholds. Table 3 shows that the improvement is due to better
neighborhoods of features with merged labels, and only in some case better
features of unmerged, original labels.

The random features (i.e. Random) present results very similar to those ob-
tained with the Original features, but with a small improvement. Surprisingly,
this improvement is most evident for features of categories that are the same
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Table 2: Proportion of K-nearest neighbors that share the same predicted cate-
gory. Results were obtained with the models trained on the original, the random,
and the clean categories. Overall, at each value of K, the embedding space of
the model trained on clean categories is better clustered than those of models
trained on the original and random labels.

All Neighbors (%) Filtered Neighbors (%)

K Th. Original Random Clean Original Random Clean

1 0.05 12.15±12.25 12.36±11.15 17.30±14.79 37.32±15.07 37.83±12.32 42.34±15.82

5 0.05 24.33±13.38 24.91±12.01 29.74±15.10 34.16±13.78 34.68±12.24 39.09±15.09

10 0.05 27.76±13.23 28.37±11.87 32.96±14.85 32.91±13.71 33.48±12.19 37.84±15.11

1 0.2 51.02±22.74 51.88±20.91 55.36±20.03 69.22±18.99 70.03±16.76 71.96±17.54

5 0.2 60.40±19.75 61.47±17.84 63.92±19.00 65.12±19.68 66.12±17.54 68.29±18.58

10 0.2 60.55±20.18 61.71±18.20 64.16±19.31 62.95±20.43 64.05±18.34 66.32±19.39

between Original and Random (Appendix 3), rather than the categories that
were merged in Random, suggesting that there is an advantage to training on
fewer labels overall.

Surprisingly, when features from the same image are ignored (Filtered Neigh-
bors), the percentage of neighbors who share the same category increases dra-
matically. This indicates that BUA features tend to place visually similar regions
(from the same image) close together, regardless of their semantic content (their
predicted object label).

In conclusion, the analysis on the neighbors verified our main claim: when
the BUA object detector is trained with the original noisy labels, it results in
a sub-optimal representational space that can be improved simply by retraining
the model on cleaner labels set.

Distances We examine the global structure of the feature space by looking
at the distances between items with the same label (intra-category) and the
distances between the category centroids (inter-category). If the feature space
is organised by categories, then intra-category distances should be small, while
inter-category distances should be larger.

Table 4 reports the inter and intra-categyr distances for features from the
models trained with the original, clean, and random labels. Intra-category dis-
tance is the average Euclidean distance between features with the same predicted
label, while inter-category distance is the average Euclidean distance between the
centroids of each category (all averages are macro-averages over categories). We
see that the Clean labels lead to categories that are clustered more closely to-
gether, evident in a lower average intra-category distance, compared to both the
Original and Random labels. Counter to our hypothesis, inter-category distance
is lower when using Clean labels, especially compared to the Original labels,
and also slightly lower than Random labels. This indicates that the global fea-
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Table 3: Proportion of K-nearest neighbors that share the same predicted cat-
egory, comparing models trained using the original versus the clean categories.
(See Table 6 for a comparison with random categories.) “Th.” indicates the
threshold values adopted for bounding box extraction. “Merged” refers to origi-
nal categories that are merged into one new clean category. “Untouched” refers
to those categories not merged with others during the cleaning process, and “All”
refers to all the categories. Overall, the clean features are better clustered than
the original features.

All Neighbors (%) Filtered Neighbors (%)

Th. K Categories Original Clean Original Clean

0.05 1 All 12.15±12.25 17.30±14.79 37.32±15.07 42.34±15.82

0.05 1 Untouched 9.19±9.47 8.56±8.84 32.20±16.21 32.86±15.18

0.05 1 Merged 12.71±12.62 19.03±15.12 38.28±14.65 44.22±15.26

0.05 5 All 24.33±13.38 29.74±15.10 34.16±13.78 39.09±15.09

0.05 5 Untouched 19.71±12.27 20.35±11.77 28.62±24.39 29.48±13.68

0.05 5 Merged 25.19±13.40 31.60±14.99 35.19±13.41 40.99±14.63

0.05 10 All 27.76±13.23 32.96±14.85 32.91±13.71 37.84±15.11

0.05 10 Untouched 22.55±12.64 23.33±12.26 26.97±14.15 27.95±13.58

0.05 10 Merged 28.73±13.12 34.87±14.57 34.01±13.34 39.80±14.62

0.2 1 All 51.02±22.74 55.36±22.03 69.22±18.99 71.96±17.54

0.2 1 Untouched 43.34±21.95 41.37±21.45 62.26±23.11 60.92±22.20

0.2 1 Merged 52.14±22.64 57.29±21.40 70.23±18.09 73.48±16.22

0.2 5 All 60.40±19.75 63.92±19.00 65.12±19.68 68.29±18.58

0.2 5 Untouched 51.88±21.68 50.58±20.88 56.33±23.38 55.51±22.08

0.2 5 Merged 61.64±19.14 65.75±17.97 66.40±18.74 70.05±17.32

0.2 10 All 60.55±20.18 64.16±19.31 62.95±20.43 66.32±19.39

0.2 10 Untouched 50.83±22.63 49.92±21.42 52.89±23.80 52.12±22.38

0.2 10 Merged 61.97±19.39 66.12±18.15 64.42±19.46 68.28±18.09

ture space is also more compact overall. Surprisingly, across all feature spaces
(Original, Clean, and Random) the intra-category distances are higher than the
inter-category distances, suggesting that features from different categories are
highly intermingled.

In order to control for label set and category size, we map the original features
to the clean (i.e. “Orig.→Clean-878”) or random (i.e. “Orig.→Random-878”) set
of categories, ensuring the same number of points in each label category, as well
as the same number of labels. This results in a higher intra-category average
distance, compared to the original categories, which indicates that features from
merged labels are not mapped to nearby parts of the space. Notably, the clean
mapping leads to only very slightly lower intra-category distances compared to
the random mapping.
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Table 4: Intra-category (average pairwise of points with the same label) and
inter-category (average distance between categegory/label centroid) Euclidean
distances in different feature spaces. Results were obtained with the models
trained on original (i.e Orig.), clean, and random label sets. The model trained
on cleaner labels presents lower distances in both the intra-categories and the
inter-categories analysis.

Analysis Orig. Orig.→Clean-878 Clean Orig.→Random-878 Random

Intra-Category
49.69 52.10 45.37 52.96 47.77
±8.64 ±8.10 ±6.98 ±8.63 ±7.87

Inter-Category
47.97

NA
39.76

NA
40.19

±5.31 ±4.94 ±5.87

Overall, our analysis of the local neighborhoods shows a positive effect of the
clean label set, with more neighbors with the same label. However, the analysis
of the global feature space suggests that the BUA features are not well separated
according to object semantics, regardless of the label set used.

6.3 Visual Grounding Results

In this section, we investigate the utility of the features extracted with the BUA
model in a visual grounding task, namely Referring Expression Comprehension,
on the Flickr30K Entities dataset. Our expectation is that features extracted
with the models trained on the new categories will be more coherent and useful
than those extracted with the model trained on the original set of categories,
leading to better performance on this downstream task.

As our visual grounding model, we use the Bilinear Attention Network [23]
(BAN) model, which, even if no longer state of the art, obtains relatively good
results on the Flickr30k Entities dataset. The advantage of using the BAN model
is that it is a simple model that uses a straightforward fusion component to
merge the text and visual information, and that requires only the Flickr30k
Entities dataset for training (other models that achieve higher scores are pre-
trained on much larger data sets and have more complex architecture [22, 65,
14, 28, 60]). BAN implements a simple architecture that uses only the 2048-
dimensional bounding box features extracted from the object detector as the
visual input features; it does not use the label predicted from the features. On
the text side, the model initializes each word with its GloVe [37] embedding
and uses a GRU [8] to generate a representation for the sentence. The visual
and textual representations are then fused together through a bilinear attention
networks. The simple fusion component allows us to see the effect of different
visual feature spaces more clearly. We use the code provided by the authors10,
and no hyper-parameters were changed from the original model. The experiments
were performed using an A5000 24GB GPU.

10 https://github.com/jnhwkim/ban-vqa
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Table 5: Visual Grounding results obtained with the Bilinear Attention Networks
(BAN) [23] model on the Flickr30k Entities dataset. “R@K” refers to the Recall
metric with the top K predictions, while “UB” refers to the upper bound results
that can be achieved with the bounding boxes extracted with the indicated
threshold. The features extracted with the model trained on the clean labels set
consistently perform better than the original features.

Test Set (%) N. Bounding Boxes

Features Threshold R@1↑ R@5↑ R@10↑ UB↑ Min Max Test

[23] 0.2 69.80 84.22 86.35 87.45 10 91 30 034

Original 0.2 73.32 84.21 85.67 86.53 2 89 20 916
Clean 0.2 73.41 85.08 86.52 87.31 2 93 21 923

Original 0.1 74.72 86.06 88.71 90.70 5 100 36 792
Clean 0.1 75.43 86.76 89.56 91.22 7 100 36 719

Original 0.05 75.41 85.46 88.86 92.38 12 100 59 256
Clean 0.05 75.75 85.88 89.52 92.67 11 100 56 731

Table 5 reports the results obtained in the visual grounding task by the
BAN model trained using the features extracted by both the models trained
on the original (i.e. Original) and new cleaner (i.e. Clean) label sets. Whenever
BAN is trained using the Clean features, the performance of the model increases
compared to the BAN model trained on the Original features. The improvement
is small but consistent across bounding box thresholds and recall levels.

We also see that the BUA PyTorch implementation of the BAN model always
achieves better performance than the Caffe implementation, even with fewer
bounding boxes. This result implies that the implementation code used to train
the object detector strongly impacts the results of the visual grounding task,
although, in the object detection task, there is only a small improvement11.

In conclusion, the results obtained with the BAN model on the visual ground-
ing task suggest that the BUA model trained using a cleaner set of labels presents
not only a well-clustered embedding space but also a more useful features rep-
resentations able to improve downstream tasks.

7 Conclusion and Future Work

This paper introduced a new set of 878 category labels to retrain the BUA model,
which refines the originally noisy 1600 categories by merging labels that are syn-
onymous or have highly related meanings. We investigated the effect of using the

11 The extracted features used in the BAN paper are not made available by the authors.
However, some ‘reproducibility’ features (slightly different) were made available by
third users (https://github.com/jnhwkim/ban-vqa/issues/44) who successfully re-
produced the main paper results.
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cleaner label set in terms of performance on the original object detection task,
showing that the model trained on the new set of labels improves its object de-
tection capabilities. We also analyzed the embedding space in the object detector
trained on the cleaned categories and showed that it is better clustered than the
embedding space derived from the original categories. Finally, we evaluated the
utility of the new model as black-box feature extractor for a downstream visual-
textual grounding task with the Bilinear Attention Network model. The results
show that features from the new object detector can consistently improve the
BAN model across commonly used object detection thresholds.

Future work involves studying the effect of using the improved label set
on large pretrained language-and-vision models, such as VILBERT [33] and
LXMERT [48]. Since these models use the bounding box category labels pre-
dicted by the object detector in their loss function, in addition to using the
features as their visual input, removing label noise should benefit these models.

In this work, we merged the noisy categories using a skilled human annota-
tor, which may have introduced some unwanted human bias or error into the
cleaning process. Nevertheless, our approach highlights the advantage of using
improved label sets, both for core object detection and downstream multimodal
task performance. Future work could generate alternative cleaned categories by
merging similar ones, e.g using a framework similar to Confidence Learning [36].
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Appendix 1: Frequencies by Categories

We introduced both the set of clean and random categories deriving from the
original ones. The original label set is defined by 1600 categories, while both the
new clean and the random sets are defined by 878 categories. Figure 3 shows
frequencies of objects appearing in the Visual Genome training split, where
objects are either labeled according to the original label set (in blue), the new
cleaned label set (in orange), or the random label set (in brown). The new label
sets lead mostly to the removal of many low-frequency categories in the long
tail, rather than creating new very frequent categories. Surprisingly, the random
procedure that generated the random label set also removed the long tail of
low-frequencies categories.

100 101 102 103

log(Categories)

102

103

104

105

lo
g(

Fr
eq

ue
nc

ie
s)

Boxes Frequencies by Category
Original categories
Clean categories

100 101 102 103

log(Categories)

102

103

104

105

lo
g(

Fr
eq

ue
nc

ie
s)

Boxes Frequencies by Category
Original categories
Random categories

100 101 102 103

log(Categories)

102

103

104

105

lo
g(

Fr
eq

ue
nc

ie
s)

Boxes Frequencies by Category
Clean categories
Random categories

Fig. 3: LogLog plots of objects frequencies for each category. The frequencies
are calculated on the training set annotations. The distribution of the original
categories is in blue, the new categories are in orange, and the random categories
are in brown. The cleaning process did not generate high-frequency categories
and at the same time removed many low-frequency categories for both cleaner
and random label sets.

Appendix 2: Prediction Confidence

In Figure 4 it is reported the KDE plots for the probability values of the argmax
category predicted by the original, clean, and random label sets.

We find that the BUA detector trained on the cleaned categories produces
more high confidence predictions than a detector trained on the original noisy
categories. Closer inspection shows that this difference is due to higher confidence
when predicting objects in the new merged clean categories. However, this is
not the case for BUA trained on random categories, which presents the same
confidence as the model trained on the original categories.
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Fig. 4: KDE plots for the probability values of the argmax category predicted by
the model. The plots on the left consider all the categories, the plots in the center
consider just the categories that we did not merge during the cleanup process
(i.e. “Untouched”), and the last plots on the right consider only the merged
categories. Overall, the cleaned categories lead to higher confidence values than
the original categories, while there is no difference between original and random
categories.
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Appendix 3: Nearest Neighbors Analysis on Random
Labels

In this section, we perform the nearest neighbors analysis on the random labels
focusing on the “Merged”, “Untouched”, and “All” categories. Table 6 reports
the results of this analysis, considering features extracted with different threshold
values (i.e. 0.05 and 0.2) and considering either all features or only features from
different images (“Filtered Neighbors”). This step removes features that might
be from highly overlapping regions of the same image.

The random features present results very similar to those obtained with the
original features, but with a small improvement. In other words, there is an
advantage to training on fewer labels overall. However, the improvement given
by clean labels is much greater than that obtained with the random labels,
strengthening the importance of training BUA with clean categories.

Table 6: Proportion of K-nearest neighbors that share the same predicted cat-
egory, comparing models trained using the original versus random categories
(cf. Table 3). The random features present small improvements over the original
features, suggesting that there is a small advantage in training with fewer labels;
however clean labels help more.

All Neighbors (%) Filtered Neighbors (%)

Th. K Categories Original Random Original Random

0.05 1 All 12.15±12.25 12.36±11.15 37.32±15.07 37.83±12.32

0.05 1 Untouched 10.06±11.91 10.32±12.13 35.81±13.91 36.33±14.03

0.05 1 Merged 13.16±12.29 11.35±10.50 38.05±15.55 38.56±12.90

0.05 5 All 24.33±24.38 24.91±12.01 34.16±13.78 34.68±12.24

0.05 5 Untouched 22.66±12.60 23.12±12.61 33.09±12.88 33.54±12.78

0.05 5 Merged 25.13±13.66 25.77±11.61 34.68±14.16 35.23±11.93

0.05 10 All 27.76±13.23 28.37±11.87 32.91±13.71 33.48±12.19

0.05 10 Untouched 26.40±12.34 26.98±12.04 31.89±12.78 32.42±12.71

0.05 10 Merged 28.42±13.60 29.04±11.55 33.39±14.12 33.99±11.89

0.2 1 All 51.02±22.74 51.88±20.91 69.22±18.99 70.03±16.76

0.2 1 Untouched 45.05±21.50 46.30±21.68 65.93±17.39 66.70±17.10

0.2 1 Merged 53.84±22.73 54.70±19.93 70.98±19.37 71.72±16.33

0.2 5 All 60.40±19.75 61.47±17.84 65.12±19.68 66.12±17.54

0.2 5 Untouched 56.60±18.22 57.61±17.99 61.87±18.10 62.75±17.67

0.2 5 Merged 62.33±20.20 63.42±17.45 66.79±20.22 67.82±17.23

0.2 10 All 60.55±20.18 61.71±18.20 62.95±20.43 64.05±18.34

0.2 10 Untouched 57.05±18.44 58.14±18.24 59.76±18.69 60.69±18.39

0.2 10 Merged 62.31±20.78 63.51±17.91 64.56±21.06 65.75±18.07
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Appendix 4: Clean Labels

The cleaning process produces a new set of 878 categories from the original 1600
categories, which we report below.

1 : yolk , 5 2 5 : egg , 3 2 4 : eggs
2 : goa l
3 : bathroom ,1574 : restroom
4 : macaroni
6 : toothp ick
10 : parrot
11 : t a i l f in , 1 468 : f i n
13 : c a l c u l a t o r
15 : t o i l e t , 8 5 : t o i l e t seat , 3 0 2 : t o i l e t tank , 3 8 5 : t o i l e t bowl , 4 4 4 : t o i l e t l i d
16 : batter , 5 : umpire , 1 4 : catcher , 4 7 4 : ba s eba l l player , 1 210 : ba s eba l l p layers , 7 9 4 : p layers

, 9 2 : player , 7 8 : t enn i s player , 3 7 7 : s o c c e r player , 2 0 7 : p i t che r
1254: r e f e r e e
17 : stop sign , 1 7 : s tops ign , 1 437 : s i gn post , 9 4 1 : t r a f f i c s ign , 5 8 9 : s t r e e t s ign , 8 1 7 : s igns

, 1 2 9 : s ign , 2 4 5 : stop
1474: bus stop
18 : cone , 5 7 6 : cones , 5 6 0 : t r a f f i c cone , 6 5 8 : s a f e t y cone
19 : microwave , 1 9 : microwave oven
20 : skateboard ramp
21 : tea
23 : products
25 : k e t t l e , 6 7 : tea k e t t l e
26 : k i tchen
27 : r e f r i g e r a t o r , 2 7 : f r i d g e
28 : o s t r i c h
29 : bathtub , 1 9 6 : bath tub , 3 0 6 : tub
1168: bl ind , 3 0 : b l i nd s
31 : court , 3 9 : t enn i s court
314 : u r ina l s , 3 2 : u r i n a l
34 : bed , 8 9 3 : beds , 9 4 7 : bedding , 6 6 0 : bedspread , 1 343 : bed frame
35 : f lamingo
36 : g i r a f f e , 3 8 : g i r a f f e s , 4 7 1 : g i r a f f e head
37 : helmet
1229: laptops , 4 1 : laptop , 1 124 : laptop computer
42 : tea pot , 5 6 2 : teapot
43 : horse , 1 8 7 : horses , 1 319 : pony
44 : t e l e v i s i o n , 4 4 : tv
1351: short , 4 5 : sho r t s
46 : manhole , 1 014 : manhole cover
47 : dishwasher , 1 4 8 : washer
49 : s a i l
125 : pa ra sa i l , 1 5 69 : parachute
51 :man, 1511 : young man, 6 8 3 :men , 7 7 4 : guy , 1 441 : male
52 : sh i r t , 1 404 : t s h i r t , 1 404 : t sh i r t , 1 404 : t−sh i r t , 1 226 : d r e s s sh i r t , 1 099 : tee sh i r t , 1 157 :

sweatsh i r t , 6 5 3 : undersh i r t , 2 3 3 : tank top , 1 3 3 : j e r s ey , 1 288 : b louse
686 : cars , 5 3 : car , 9 5 5 : passenger car , 1 334 : sedan
1479: p o l i c e car
54 : cat , 1 8 5 : cats , 4 7 7 : k i t ten , 1 117 : k i t t y
55 : garage door
56 : bus , 3 8 0 : buses
57 : rad iator , 1 006 : heater
58 : t i g h t s
60 : racket , 6 0 : racquet
251 :home p la t e
1362:home
895 : base
61 : p late , 9 5 6 : p late s , 1 378 : paper plate , 5 4 0 : saucer , 5 8 7 : d i shes , 7 8 8 : d i sh
65 : ocean , 1 214 : sea
63 : beach
327 : sand
1587: sho r e l i n e , 8 1 6 : shore
64 : t r o l l e y
66 : headboard , 6 6 : head board
68 : wetsuit , 2 1 7 : wet s u i t
69 : t enn i s racket , 6 9 : t enn i s racquet
70 : s ink , 6 9 2 : s inks , 1 123 : bathroom sink , 1 424 : bas in
815 : t ra in s , 7 1 : t ra in , 1 448 : passenger t ra in , 8 9 9 : t r a i n f ront , 6 2 6 : t r a i n car , 1 182 : t r a i n

cars , 4 9 0 : ca r r i age , 6 3 7 : locomotive , 1 275 : caboose , 1 318 : r a i l r o ad
73 : sky , 1 217 : weather
1273: s k i e s
75 : t r a i n s ta t ion , 2 7 2 : t r a i n platform , 3 1 9 : platform , 3 8 7 : s t a t i on
76 : s t e r e o
77 : bats , 3 0 1 : bat , 6 5 7 : ba s eba l l bat
79 : t o i l e t brush
80 : l i g h t e r
83 : ha i r dryer
142 : e lephants , 8 4 : e lephant
86 : zebra , 8 8 : zebras
87 : skateboard , 8 7 : skate board , 1 224 : skateboards
89 : f l o o r lamp , 1426 : tab l e lamp , 1083 : lamps , 2 2 5 : lamp , 1 6 1 : chande l i e r , 9 0 5 : l i g h t f i x t u r e
91 :woman , 7 4 9 :women , 8 5 8 : lady , 9 9 6 : she , 1 486 : l ad i e s , 1 245 : mother , 1 539 : br ide
93 : tower
685 : b i cy c l e s , 9 4 : b i cyc l e , 5 0 6 : bikes , 1 0 0 : b ike
95 : magazines , 1 096 : magazine
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96 : chr i s tmas t r e e
495 : umbrel las , 9 7 : umbrella , 1 523 : para so l
151 : cows , 9 8 : cow , 4 2 8 : bul l , 7 9 3 : c a t t l e , 5 8 3 : ox , 1 202 : c a l f
280 : herd
99 : pants , 1 492 : pant , 7 8 1 : t rouser , 1 111 : sweatpants , 9 7 3 : jean , 4 8 : jeans , 6 5 1 : snow pants , 5 0 3 :

s k i pants , 1 344 : s l a c k s
102 : l i v i n g room
103: l a t ch
104 : bedroom
1204: grapes , 1 0 5 : grape
106 : c a s t l e
107 : table , 1 301 : tab le s , 8 7 5 : end table , 2 0 0 : c o f f e e tab l e
108 : swan
109 : b lender
110 : orange , 4 0 8 : oranges
219 : teddy bears , 1 1 1 : teddy bear , 1 293 : teddy , 2 7 0 : s t u f f e d animals , 7 6 7 : s t u f f e d animal , 6 4 7 :

s t u f f e d bear
113 : meter , 1 481 : meters , 2 1 1 : parking meter
115 : runway
262 : s k i boots , 1 1 7 : s k i boot
118 : dog , 3 3 8 : dogs , 1 532 : puppy
119 : c lock , 1 393 : c locks , 7 : alarm clock , 1 274 : c l ock hand , 5 0 9 : c l ock f a c e
1023: hour hand
120 : hair , 5 0 5 :mane , 1 187 : bangs
121 : avocado
123 : s k i r t
124 : f r i s b e e
126 : desk
128 :mouse , 4 8 6 : computer mouse
134 : re igns , 5 7 4 : b r id l e , 2 4 : ha l te r , 1 388 : harness
1321: hot dogs , 1 321 : hotdogs , 1 3 5 : hot dog , 1 3 5 : hotdog , 1 384 : sausage
136 : surfboard , 1 3 6 : s u r f board , 3 5 1 : sur fboards
163 : g l a s s e s , 1 3 8 : g l a s s
1493: wine g l a s s e s , 6 1 4 : wine g l a s s
625 : sung la s se s , 9 9 0 : eye g l a s s e s , 8 0 0 : e y e g l a s s e s
1327: shades , 6 2 0 : shade
1139: snow board , 1 3 9 : snowboard
140 : g i r l , 7 5 4 : g i r l s , 9 5 3 : l i t t l e g i r l
141 : plane , 5 3 2 : planes , 4 8 9 : a i rp lane s , 1 3 2 : a i rp lane , 5 3 6 : a i r c r a f t , 8 0 3 : j e t s , 5 4 5 : j e t
143 : oven , 6 7 9 : oven door , 1 9 8 : s tove
1233: range
146 : area rug , 3 3 5 : rug , 4 6 7 : carpet
344 : bears , 1 4 7 : bear , 1 3 1 : po lar bear , 2 8 3 : cub
149 : date
150 :bow t i e , 5 7 8 : neckt ie , 6 5 5 : neck t i e , 2 6 8 : t i e
152 : f i r e ex t i ngu i sh e r
153 : bamboo
154 : wa l l e t
156 : truck , 8 3 9 : t rucks
158 : boat , 2 3 4 : boats , 5 9 : s a i l boa t , 5 9 : s a i l boat , 4 2 1 : ship , 7 1 9 : yacht , 9 8 8 : canoe , 1 143 : kayak
159 : t ab l e t
160 : c e i l i n g
162 : sheep , 1 6 4 : ram , 2 3 1 : lamb
705: k i t e s , 1 6 5 : k i t e
166 : salad , 8 6 8 : l e t tuce , 1 398 : greens
167 : p i l low , 3 3 2 : p i l l ows , 8 4 2 : p i l l ow case , 6 7 5 : throw p i l l ow
168: f i r e hydrant , 1 6 8 : hydrant
169 :mug , 2 3 2 : cup , 8 5 0 : c o f f e e cup
170 : tarmac , 1 495 : asphalt , 8 3 1 : pavement
171 : computer , 1 032 : computers , 1 053 : cpu
172 : swimsuit , 1 174 : swim trunks , 3 8 8 : b ik in i , 1 0 08 : bathing s u i t
173 : tomato , 6 6 5 : tomatoes , 4 2 6 : tomato s l i c e
174 : t i r e , 1 456 : t i r e s
175 : c a u l i f l ow e r
177 : snow
178: bui ld ing , 6 7 0 : bu i ld ings , 5 8 1 : skyscraper , 1 193 : second f l o o r
1581: sandwiches , 1 7 9 : sandwich , 1 052 : sandwhich
180 : weather vane , 7 5 3 : vane
181 : bird , 1 000 : b i rd s
182 : jacket , 3 8 1 : coat , 1 521 : s k i jacket , 5 6 6 : s u i t jacket , 8 3 6 : b l a z e r
183 : chair , 6 9 9 : cha i r s , 5 5 2 : o f f i c e chair , 3 9 0 : lounge chair , 1 5 7 : beach chair , 5 0 4 : seat , 1 022 :

seats , 2 4 2 : s too l , 1 015 : s t oo l s , 1 325 : r e c l i n e r
184 : water , 1 429 : ocean water
186 : s o c c e r ba l l , 1 2 35 : ba l l s , 5 6 8 : ba l l , 4 8 1 : t enn i s ba l l , 6 7 4 : ba s eba l l
189 : barn
190 : engine , 6 1 9 : engines , 5 6 7 : t r a i n engine , 1 093 : j e t engine
191 : cake , 1 2 : b irthday cake , 2 7 3 : cupcake , 7 6 4 : f r o s t i n g
192 : head
193 : head band , 3 6 8 : headband
780 : s k i e r s , 1 9 4 : sk i e r , 1 009 : s k i i e r
195 : town
197: bowl , 1 027 : bowls
199 : tongue
1241: f l o o r s , 2 0 1 : f l o o r , 1 556 : t i l e f l o o r , 1 310 : f l o o r i n g
519 : uniforms , 2 0 2 : uniform
203: ottoman , 4 2 4 : sofa , 1 3 7 : couch , 2 2 8 : armchair
204 : b r o c c o l i
205 : o l i v e , 1 148 : o l i v e s
206 :mound , 4 5 9 : p i tcher ’ s mound
1530: jug
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208 : food , 7 0 3 : meal
209 : pa int ings , 3 4 6 : pa int ing
210 : t r a f f i c l i gh t , 1 347 : t r a f f i c l i g h t s
212 : bananas , 5 3 1 : banana , 5 5 4 : banana peel , 4 6 4 : banana bunch , 2 6 6 : banana s l i c e
958 : pee l
213 : mountain , 4 5 7 : mountains , 1 304 : mountain top , 9 8 4 : mountain range , 1 487 : peak , 1 375 :

mountainside
1161: landscape
214 : cage
218 : rad i sh
221 : su i t ca s e , 2 2 1 : s u i t case , 4 2 9 : su i t c a s e s , 2 9 7 : luggage
507 : drawer , 2 2 2 : drawers
1069: g ras se s , 2 2 3 : grass , 4 8 8 : lawn , 9 6 3 : t u r f
101 : f i e l d , 1 286 : g ra s s f i e l d , 4 1 8 : pasture
667 : s o c c e r f i e l d , 1 1 4 : ba s eba l l f i e l d , 7 6 3 : i n f i e l d , 7 2 9 : ou t f i e l d , 2 2 : dugout
289 : apples , 2 2 4 : apple
226 : goggles , 1 246 : s k i gogg l e s
510 : boys , 2 2 7 : boy
229 : ramp
269: burners , 2 3 0 : burner
235 : hat , 7 9 8 : cowboy hat , 4 8 7 : cap , 7 2 1 : ba s eba l l cap , 1 153 : beanie , 1 149 : b a l l cap
922 : brim
239: v i s o r
236 : soup
238 : neck lace
240 : c o f f e e
241 : bot t l e , 3 7 9 : bo t t l e s , 1 554 : beer bott l e , 9 3 1 : wine bott l e , 4 7 6 : water bo t t l e
1267: su r f e r s , 2 4 4 : s u r f e r
1203: back pack , 2 4 6 : backpack
1498: pack
247 : sh in guard , 8 7 6 : sh in guards
248 : wi i remote , 4 3 2 : remotes , 8 0 5 : remote , 3 4 8 : remote contro l , 7 2 3 : c on t r o l l e r , 8 1 2 : game

con t r o l l e r , 1 208 : cont ro l s , 1 589 : contro l , 1 3 03 : wi i
1101: wal l s , 2 4 9 : wall , 6 2 : rock wall , 1 2 20 : stone wall , 1 2 79 : br i ck wal l
250 : p i zza s l i c e , 1 2 7 : pizza , 9 1 4 : p i z za s
1466: s l i c e s , 1 005 : s l i c e
252 : van , 1 281 : minivan , 6 6 9 : suv , 7 0 4 : s t a t i on wagon
253 : packet
1402: earr ing , 2 5 4 : e a r r i n g s
255 : wristband , 5 6 9 : wr i s t band
797 : track , 2 5 6 : t racks
257 : mitt , 1 256 : ba s eba l l mitt , 1 454 : catcher ’ s mitt , 1 049 : ba s eba l l g love
258 :dome
259 : snowboarder
260 : faucet , 1 328 : tap
261 : t o i l e t r i e s
263 : room
806: snowsuit , 2 6 5 : snow su i t
591 : benches , 2 6 7 : bench , 1 191 : park bench
271 : zoo
717 : curta ins , 2 7 4 : curta in , 8 7 2 : drape , 1 8 8 : drapes
275 : ear , 5 2 4 : ea r s
276 : t i s s u e box , 1 198 : t i s s u e s , 1 519 : t i s s u e
277 : bread , 3 8 4 : bun
792 : toa s t
329 : s c i s s o r , 2 7 8 : s c i s s o r s
412 : vases , 2 7 9 : vase
281 : smoke
284 : t a i l , 4 4 3 : t a i l s
285 : cut t ing board
286 :wave , 7 1 3 : waves , 1 311 : s u r f
288 : windsh ie ld
290 : mirror , 1 363 : s i d e mirror
291 : l i c e n s e plate , 1 541 : l i c e n s e
382 : t r ee s , 2 9 2 : tree , 1 185 : pine t ree s , 6 8 8 : pine tree , 1 436 : t r e e l i n e
1562: t r e e branch , 1 356 : t r e e branches , 9 3 3 : t r e e trunk
1575: twig , 1 271 : twigs
999 : branches , 1 067 : branch
833 : wheels , 2 9 3 : wheel , 7 9 1 : f r on t wheel , 6 6 6 : back wheel
294 : s k i pole , 8 9 0 : s k i po l e s
295 : c l ock tower
296 : f r e e z e r
299 :mousepad , 1 257 : mouse pad
300 : road , 5 8 4 : roadway , 1 2 2 : highway , 1 056 : d i r t road , 3 0 9 : s t r e e t , 3 5 3 : lane , 1 137 : i n t e r s e c t i o n
304 : neck
305 : c l i f f
307 : s p r i n k l e s
308 : dre s se r , 3 0 3 : vanity
310 : wing , 1 232 : wings , 1 4 5 : t a i l wing
311 : s u i t
761 : o u t f i t
312 : veggie , 8 6 1 : vegg i e s
460 : palm tree , 3 1 3 : palm t r e e s
1040: doors , 3 1 5 : door , 1 490 : g l a s s door
316 : p r op e l l e r
317 : keys , 8 4 0 : key
411 : skatepark , 3 1 8 : skate park
320 : pot , 1 551 : pots
321 : towel , 3 6 3 : towels , 1 195 : hand towel
322 : computer monitor , 2 2 0 : monitors , 5 0 : monitor , 5 9 7 : computer screen , 1 1 6 : s c reen
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1199: f l i p f l ops , 3 2 3 : f l i p f lop , 1 077 : sandal , 1 176 : sanda l s
325 : shed
328 : f a c e
500 : cart , 3 3 0 : c a r t s
331 : squash , 5 1 5 : pumpkin
334 : glove , 1 298 : g l ove s
336 : watch , 1 196 : wristwatch , 1 555 : wr i s t watch
337 : g r a f i t t i
339 : scoreboard
340 : basket , 1 500 : baskets
341 : pos te r
342 : duck , 3 5 2 : ducks
343 : horns , 5 2 7 : horn
345 : j eep
347 : l i gh thouse
349 : t o a s t e r
1166: vegetable , 3 5 0 : vegetab les , 7 8 4 : produce
354 : car ro t s , 5 3 0 : ca r ro t
355 : market
659 : paper towel , 3 5 6 : paper towel s
357 : i s l and
358 : b lu ebe r r i e s , 1 533 : b e r r i e s , 1 462 : s t rawber r i e s , 1 061 : strawberry , 8 8 8 : b lueberry
359 : smi l e
360 : ba l loons , 4 1 6 : ba l loon
361 : s t r o l l e r
594 : napkins , 3 6 2 : napkin
915 : paper , 3 6 4 : papers
365 : person , 6 3 5 : adult , 9 4 9 : worker , 9 4 3 : pede s t r i an
541 : people , 4 6 1 : crowd , 7 9 5 : group , 9 4 0 : audience , 1 197 : spectator , 6 1 5 : spec ta tor s , 1 152 : fans
333 : fami ly
894 : fan , 8 : c e i l i n g fan
1251: t r a i n track , 3 6 6 : t r a i n t racks
986 : r a i l , 1 4 06 : r a i l s
367 : ch i l d
369 : pool
370 : plant , 9 1 9 : p lant s
1382: weeds
371 : harbor , 6 4 3 : marina
372 : counter
373 : hand , 7 8 3 : hands
374 : house , 9 7 8 : houses
375 : donut , 3 7 5 : doughnut , 6 2 8 : donuts , 6 2 8 : doughnuts
376 : knot
378 : s e a gu l l
386 : trunk , 1 140 : trunks
391 : b r eak fa s t
392 : nose , 4 9 1 : snout , 6 6 8 : n o s t r i l
393 :moon
394 : r i v e r , 1 588 : stream
395: race r
1103: p i c ture s , 3 9 6 : p ic ture , 1 529 : image , 1 070 : photo , 9 : photos , 1 453 : photograph
397 : shaker , 8 0 4 : shakers , 8 1 : pepper shaker , 9 9 1 : s a l t shaker , 1 573 : sa l t , 1 522 : season ing
1542: peppers , 6 2 3 : pepper
398 : s idewalk , 3 9 8 : s i d e walk
907 : curb
399 : shutter s , 1 004 : shut t e r
400 : s tove top , 4 0 0 : s tovetop
401 : church , 4 7 2 : s t e ep l e , 1 126 : s p i r e
402 : lampshade , 6 8 7 : lamp shade
403 :map
406 : a i r po r t
410 : enc l o su r e
413 : c i t y
414 : park
415 : mailbox
417 : b i l l boa rd , 6 3 1 : advert isement , 1 211 : ad
419 : p o r t r a i t
420 : forehead
422 : cook ie
423 : seaweed
425 : s l a t s
427 : t r a c t o r
430 : g r a f f i t i
837 : pen , 4 3 3 : pens
1415: windowsi l l , 4 3 4 : window s i l l , 1 2 84 : l edge
435 : suspenders
436 : e a s e l
437 : tray , 4 0 5 : p l a t t e r
438 : straw
439: c o l l a r
440 : shower , 1 3 0 : shower curta in , 9 6 5 : shower head , 9 9 7 : shower door
864 : bags , 4 4 1 : bag , 1 158 : handbag , 7 2 8 : purse , 8 2 1 : sack
445 : panda
447 : out l e t , 1 455 : e l e c t r i c a l out l e t , 1 434 : socket , 5 9 2 : f u s e l a g e
1154: stem , 4 4 8 : stems
449 : va l l e y
450 : f l ag , 1 545 : f l a g s , 7 1 8 : american f l a g
451 : jockey
452 : g rave l
453 :mouth
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454 :window , 9 7 9 : windows , 1 422 : s i d e window , 5 3 7 : f r on t window , 2 8 2 : sky l i ght , 1 586 : panes
455 : br idge
1432: overpass
456 : corn
458 : beer
609 : sk i , 4 6 2 : sk i s , 1 337 : s k i i s
465 : t enn i s shoe , 1 173 : t enn i s shoes , 7 4 8 : sneakers , 9 0 4 : sneaker , 7 7 1 : shoes , 2 4 3 : shoe , 5 2 0 :

c l ea t , 1 340 : c l e a t s , 7 0 6 : boots , 8 7 3 : boot
468 : eye , 5 4 7 : eyes
469 : urn
470 : beak
473 : mattress
475 : wine
478 : archway , 1 549 : arches , 6 3 6 : arch
929 : candles , 4 7 9 : candle
480 : c r o i s s a n t
482 : d re s s
483 : column , 1496 : columns
1238: u t en s i l , 4 8 4 : u t en s i l s , 7 6 5 : forks , 2 6 4 : fork , 1 179 : butter kn i f e , 7 5 7 : kn i f e , 5 5 7 : spoon

, 5 1 7 : chopst i cks , 5 4 2 : s i l v e rware , 1 316 : kn ives
622 : ce l lphone , 4 8 5 : c e l l phone , 4 6 3 : phone , 8 1 3 : smartphone , 5 8 2 : te lephone , 5 1 4 : iphone
498 : ipod
492 : cab inets , 6 1 1 : cabinet , 5 5 8 : cab inet door , 8 1 9 : cupboards , 1 330 : cupboard
493 : lemons , 6 7 8 : lemon
494 : g r i l l
496 :meat , 1 380 : bee f
497 :wagon
499 : bookshe l f , 8 6 3 : book she l f , 8 4 8 : sh e l f , 8 8 7 : bookcase , 1 163 : sh e l v e s
501 : r oo f
502 : hay
508 : game
555 : ba s eba l l game
74 :match , 6 3 8 : t enn i s match , 9 7 4 : t enn i s
511 : r i d e r
512 : f i r e escape
1535: pans , 5 1 6 : pan , 1 295 : s k i l l e t
588 : h i l l s , 5 1 8 : h i l l , 1 1 32 : h i l l s ide , 1 175 : h i l l s i d e , 5 1 3 : s lope , 1 025 : s k i s l ope
521 : costume
522 : cabin
523 : p o l i c e o f f i c e r , 4 3 1 : policeman , 8 5 5 : o f f i c e r , 8 2 6 : p o l i c e
1268: arrows , 5 2 8 : arrow\ s c r i p t s i z e
529 : toothbrush
533 : garden , 7 6 8 : yard
534 : f o r e s t , 4 0 9 : woods , 1 228 : wood
535 : b r o c o l l i
538 : dashboard
1222: s tatues , 5 3 9 : statue , 6 8 2 :monument , 1 332 : s cu lp tu r e
571 : f r u i t s , 5 4 3 : f r u i t
544 : dra in
546 : speaker , 1 058 : speakers
549 : l i d
550 : soap
601 : rock , 5 5 1 : rocks , 1 087 : stone , 9 6 7 : stones , 8 4 5 : boulder , 1 457 : bou lders
553 : door knob , 9 7 6 : doorknob , 6 9 8 : knob , 6 0 7 : knobs
556 : asparagus
559 : p ineapple
561 : nightstand , 5 6 1 : n ight stand
563 : taxi , 1 265 : t ax i cab , 9 0 1 : cab
564 : chimney
565 : lake
865 : p i ck l e s , 5 7 0 : p i c k l e
572 : pad , 1 369 : pads , 3 3 : knee pads , 9 9 4 : knee pad , 7 4 7 : kneepad
575 : breas t
880 : head l i gh t , 5 7 7 : headl ight , 5 9 0 : head l i gh t s
579 : skater , 2 9 8 : skateboarder
580 : t o i l e t paper
1160: socks , 5 8 5 : sock
586 : paddle , 1 464 : oar
593 : card
807 : bushes , 5 9 5 : bush , 1 336 : shrubs , 1 305 : shrub , 2 8 7 : hedges , 2 1 5 : hedge
596 : r i c e
1183: spoke , 5 9 8 : spokes
599 : f l owers , 6 6 3 : f lower , 6 8 9 : bouquet
600 : bucket
603 : pear , 1 491 : pears
604 : sauce , 6 0 8 : mustard , 7 8 6 : ketchup , 1 566 : condiments
605 : s tore , 4 0 4 : shop , 1 131 : s t o r e f r o n t
866 : stand
610 : stands , 9 8 5 : b l eache r s
612 : d i r t , 4 6 6 : ground , 1 272 : s o i l , 1 4 76 : pebbles , 1 477 :mud
613: goats , 7 1 2 : goat
617 : pancakes
673 : kid , 6 1 8 : kids , 1 063 : ch i l d r en
621 : f e ede r
624 : blanket , 4 4 6 : comforter , 1 200 : q u i l t
627 :magnet , 6 4 1 : magnets
629 : sweater , 4 0 7 : hoodie , 6 4 5 : ves t
630 : s i g n a l
632 : log
633 : vent , 1 043 : a i r vent
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634 : whiskers
1452: tents , 6 3 9 : tent
939 : motor bike , 6 4 0 : motorbike , 1 4 4 : d i r t bike , 3 2 6 :moped , 4 4 2 : scooter , 1 194 : motor , 4 0 :

motorcycle , 2 1 6 : motorcyc les
642 : n ight
644 : wool
646 : r a i l r o ad tracks , 5 4 8 : ra i lway
649 : bib
650 : frame , 1 019 : p i c tu r e frame
652 : tank , 7 3 4 : water tank , 8 9 2 : gas tank
654 : i cons
656 : beams , 7 8 5 : beam
661: can
1162: soda can
1565: conta iner s , 6 6 2 : conta ine r
664 : veh i c l e , 1 585 : v e h i c l e s
671 : canopy
672 : f lame
676 : b e l t
677 : rainbow
758: tags , 6 8 0 : tag , 1 482 : name tag , 1 401 : name
681 : books , 1 011 : book
1469: shadows , 6 8 4 : shadow
690: toothpaste
1094: potatoes , 6 9 1 : potato
693 : hook
694 : switch , 1 033 : l i g h t switch
695 : lamp post , 6 9 5 : lamppost , 1 520 : l i g h t post
696 : l a p e l
697 : de s e r t
700 : pasta
701 : f ea the r s , 1 598 : f eather , 1 5 5 : t a i l f e a t h e r s
702 : ho le
707 : baby
708 : biker , 7 4 6 : moto r cyc l i s t
709 : gate
710 : s i g n a l l i gh t , 1 156 : t r a f f i c s i g n a l
711 : headphones
714 : bumper
715 : bud , 1 201 : f l o r e t
716 : logo
720 : box , 1 107 : boxes , 6 1 6 : crate , 9 8 2 : cardboard box , 1 417 : package , 1 116 : bin , 1 397 : carton
724 : awning
725 : path , 7 7 8 : pathway , 1 447 : t r a i l
730 : pigeon
731 : todd l e r
732 : beard , 8 6 9 : f a c i a l hair , 3 8 9 : goatee , 6 4 8 : moustache , 1 219 : mustache
735 : board
736 : parade
737 : robe
738 : newspaper
1136: wire , 7 3 9 : wi re s
740 : camera
742 : deck
743 : watermelon , 1 031 : melon
782 : cloud , 7 4 4 : c louds
745 : deer
1361: onion , 7 5 0 : onions
1512: eyebrows , 7 5 1 : eyebrow
752: gas s t a t i on
755 : t rash
759 : l i gh t , 1 261 : l i g h t s
760 : bunch
762 : groom
766: enterta inment center , 1 035 : tv stand
770 : ladder
1169: b rac e l e t s , 7 7 2 : b r a c e l e t
773 : tee th
775 : d i sp l ay case
1068: d i sp l ay
776 : cushion , 1 407 : cush ions
1247: posts , 7 7 7 : post\ s c r i p t s i z e
802 : tab l e c loth , 7 7 9 : t ab l e c l o t h
1385: paws , 7 8 7 : paw
789: r a f t
790 : crosswalk
796 : c o f f e e pot
799 : peta l , 1 5 96 : p e t a l s
801 : handle , 1 057 : handles
1017: door handle
808 : d e s s e r t
830 : l egs , 8 0 9 : leg , 7 2 6 : f r on t l e g s
810 : eag l e
811 : f i r e truck , 8 1 1 : f i r e t r u c k
814 : backsplash
818 : b e l l
820 : sweat band , 1 365 : sweatband
822 : ankle
823 : co in s l o t
824 : bage l
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825 : masts , 1 046 : mast
828 : b i s c u i t
1074: toys , 8 2 9 : toy
1346: d o l l
832 : out s ide
834 : d r i v e r
835 : numbers , 9 9 2 : number
838 : cabbage
841 : saddle
843 : goose , 3 8 3 : geese
844 : l a b e l
846 : pajamas
847 : wr i s t
849 : c r o s s
854 : a i r
856 : pepperoni
857 : cheese
859 : k ickstand
936 : countertop , 8 6 0 : counter top
862 : ba s eba l l uniform
867: nett ing , 1 570 : mesh
112 : net , 8 8 3 : t enn i s net
870 : l ime
884 : animal , 8 7 1 : animals
874 : r a i l i n g , 1 475 : r a i l i n g s
237 : fence , 1 412 : wire fence , 1 390 : f ence post , 1 283 : f enc ing
1563: tusks , 8 7 9 : tusk
881 : walkway , 8 8 5 : boardwalk
882 : cockp i t
891 : parking lot , 8 5 2 : l o t
573 : d i spenser , 8 9 6 : soap d i spense r
897 : banner
898 : l i f e vest , 7 2 7 : l i f e j a cke t
1180: words , 9 0 0 : word , 1 597 : text
903 : exhaust pipe
1248: power l i n e , 9 0 6 : power l i n e s
908 : scene
909 : buttons , 1 089 : button
910 : roman numerals , 9 6 0 : roman numeral , 7 6 9 : numeral , 7 5 6 : numerals
911 : muzzle
912 : s t i c k e r , 1 170 : s t i c k e r s , 1 387 : deca l
913 : bacon
917 : s t a i r s , 8 7 7 : steps , 1 484 : s t a i r c a s e , 1 423 : sta i rway
918 : t r i a n g l e
921 : beans , 1 135 : bean
924 : l e t t e r s , 1 472 : l e t t e r , 1 122 : l e t t e r i n g
926 :menu
983 : f i n g e r s , 9 2 7 : f i nge r , 7 3 3 : thumb
930: p i cn i c tab l e
932 : p en c i l
934 : n a i l
935 : mantle
176 : f i r e p l a c e
937 : view
938: l i n e , 1 155 : l i n e s , 1 560 : ba s e l i n e
1467: arms , 9 4 2 : arm
944: s t a b i l i z e r
945 : dock , 1 138 : p i e r
946 : doorway
950 : canal
951 : crane
952 : grate
954 : rims , 1 066 : rim
957: background
1349: s t r i ng s , 9 6 1 : s t r i n g
920 : rope
1297: cab le
1165: cord , 1 528 : cords
962 : t i n e s
964 : armrest
966 : l ea sh
1147: stop l i gh t , 9 6 8 : s t o p l i g h t
970 : f r on t
948 : end
971 : s c a r f
972 : band
975 : p i l e , 1 192 : s tack
977 : foot , 9 1 6 : f e e t
980 : r e s taurant
981 : booth
987 : pastry , 7 4 1 : p a s t r i e s
989 : sun , 1 002 : sunset
993 : f i s h
995 : fu r
998 : rod
1001: p r i n t e r
1003: median
1007: prongs
1010: rack
1012: blade , 1 592 : b lades
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1013: apartment
1016: overhang
1018: couple
1020: chicken
1021: p lante r
1024: dvd p layer
1026: f r ench fry , 7 2 2 : f r i e s , 9 0 : f r ench f r i e s , 8 5 3 : f r y
1028: top
1029: landing gear
1030: c o f f e e maker
1034: j a r
1036: o v e r a l l s
1037: garage
1038: tab l e top
1039: wr i t ing
1041: stadium
1042: placemat
1044: t r i c k
1045: s l ed
1047: pond
1048: s t e e r i n g wheel
1050: watermark , 1 580 : pr int , 1 141 : webs i te
1051: p i e
1064: c ru s t
1054:mushroom ,1461 : mushrooms
1059: f ender
1060: te lephone pole , 1 055 : power pole , 1 367 : l i g h t pole , 1 292 : u t i l i t y po le
1090: poles , 6 0 2 : po le
1062:mask , 1 112 : f a c e mask
1065: art , 1 371 : artwork , 8 2 7 : drawing
1071: r e c e i p t
1072: i n s t r u c t i o n s
1073: herbs
1366: handlebar , 1 075 : handlebars , 9 6 9 : handle bars
1076: t r a i l e r
1078: s k u l l
1079: hangar
1080: pipe , 1 416 : p ipes
1081: o f f i c e
1082: chest
1084: hor izon
1085: ca lendar
1086: foam
1517: bar , 1 088 : bars
1091: heart
1092: hose
1095: ra in
1097: chain
1098: footboard , 1 553 : baseboard
1100: design , 1 451 : de s i gns
1102: copyr ight
1584: p i l l a r s , 1 104 : p i l l a r
1266: drinks , 1 105 : drink , 6 0 6 : ju i c e , 9 2 3 : beverage , 9 2 5 : soda , 9 0 2 : l i q u i d
1106: b a r r i e r
1108: choco la t e
1109: che f
1110: s l o t
1113: i c i n g
1115: c i r c l e
1118: e l e c t r o n i c s , 1 567 : dev ice
1119: wi ld
1374: t i l e , 1 120 : t i l e s
1121: steam
1125: cherry
1127: conductor
1128: sheet , 1 189 : shee t s
1129: s l ab
1130: windsh ie ld wipers , 1 471 : windsh ie ld wiper , 1 114 : wipers
1133: spatu la
1345: t a i l l i g h t s , 1 134 : t a i l l i gh t , 1 134 : t a i l l i g h t , 9 5 9 : brake l i g h t
1142: bo l t
1144: nuts
1145: ho lder
1146: turb ine
1151: ba r r e l
1159:mulch
1167: apron
1171: t r a f f i c
1172: s t r i p
1177: concrete , 1 544 : cement
1178: l i p s , 1 444 : l i p
1181: l eaves , 8 5 1 : f o l i a g e , 1 282 : l e a f
1184: c e r e a l
1186: c oo l e r
1188: h a l f
1190: f i g u r i n e
1205: s k i t racks
1206: sk in
1209: dinner
1207:bow , 1212 : r ibbon
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1213: ho t e l
1215: cover
1216: tarp
1218: notebook
1221: c l o s e t
1223: bank
1225: butter
1227: knee
1230: c u f f
1231: hubcap
1234: s t ru c tu r e
1236: tunnel
1237: g lobe
1239: dumpster
1240: cd , 9 2 8 : dvds , 1 510 : d i s c
1242: wrapper
1243: f o l d e r
1244: pocket
1249:wake
1294: rose , 1 250 : r o s e s
1252: r e f l e c t i o n
1253: a i r c ond i t i one r
1255: bar r i cade
1258: garbage can , 1 360 : t rash bin , 8 8 9 : t rash bag , 8 7 8 : trashcan , 5 2 6 : t rash can
1259: buckle
1260: f o o t p r i n t s
1262: muff in
1263: bracket
1264: plug
1269: c on t r o l panel , 1 506 : panel
1270: r ing
1276: playground
1277:mango
1278: stump
1280: screw
1312: c l o th
1285: c lo thes , 1 342 : c l o th ing
1287: plumbing
1289: patch
1290: s c a f f o l d i n g
1291: hamburger , 1 150 : burger
1296: cy c l e
1299: bark
1300: decorat ion
1302: palm
1306: hoof
1307: c e l e r y
1308: beads
1309: plaque
1540: spray
1543: passengers , 1 313 : passenger
1314: spot , 1 599 : spots
1315: p l a s t i c
1317: case
1320: muf f l e r
1322: s t r i p e , 1 392 : s t r i p e s
1323: s c a l e
1324: block , 1 503 : b locks
1326: body
1329: t o o l s
1331: wal lpaper
1333: su r f a c e
1335: d i s tance
1338: l i f t , 1 1 64 : s k i l i f t
1339: bottom
1341: r o l l
1348: symbol
1350: f i x t u r e s
1352: pa int
1353: candle ho lder
1354: guard r a i l
1355: c y c l i s t
1357: r i p p l e s
1358: gear
1359: waist
1364: brush
1370:ham
1372: r e f l e c t o r
1373: f i g u r e
1376: black
1409: br ick , 1 377 : b r i ck s
1379: s t i c k
1381: pat io
82 : gazebo
1383: back
1386: farm
1389:monkey
1391: door frame
1428: pony t a i l , 1 3 94 : ponyta i l
1395: toppings
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1396: s t rap
1399: chin
1400: lunch
1403: area
1405: cream
1408: lanyard
1410: hal lway
1411: cucumber
1413: f e rn
1414: tanger ine
1418: whee lcha i r
1419: ch ips
1420: driveway
1421: ta t too
1425: machine
1427: rad io
1430: i n s i d e
1431: cargo
1433:mat
1435: f l ower pot
1438: tube
1439: d i a l
1440: sp la sh
1442: l ante rn
1443: l i p s t i c k
1445: tongs
1446: s k i s u i t
1449: bandana
1450: ante lope
1458:mannequin
1459: p l a in
1460: l aye r
1463: p i e c e
1465: b ike rack
1470: hood
1473: dot
1478: c laws
1480: crown
1483: entrance
1485: shrimp
1488: vines , 1 577 : ivy
1489: computer keyboard , 8 8 6 : keypad , 7 2 : keyboard
1494: s t a l l
1497: s l e e v e
1499: cheek
1501: land
1502: day
1504: courtyard
1505: pedal
1507: seeds
1508: balcony
1509: ye l low
1513: crumbs
1514: spinach
1515: emblem
1516: object , 1 548 : ob j e c t s
1518: cardboard
1524: termina l
1525: s u r f i n g
1526: s t r e e t l i g h t , 1 526 : s t r e e t l i gh t , 1 368 : s t r e e t lamp
1527: a l l e y
1531: antenna
1534: diamond
1536: founta in
1537: foreground
1538: syrup
1546: shack , 1 571 : hut
1547: trough
1550: streamer
1552: border
1557: page
1558: pin
1559: items
1564: donkey
1568: envelope
1572: bu t t e r f l y
1576: p i l o t
1578: f u r n i t u r e
1579: c lay
1582: l i o n
1583: s h i n g l e s
1590: lock
1591: microphone
1593: towel rack , 1 561 : hanger
1594: coa s t e r
1595: s t a r
1600: buoy
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ACM/SIGAPP Symposium on Applied Computing, Virtual Event, April 25
- 29, 2022. pp. 49–57. ACM (2022). https://doi.org/10.1145/3477314.3507047,
https://doi.org/10.1145/3477314.3507047

41. Rigoni, D., Serafini, L., Sperduti, A.: A better loss for visual-textual grounding.
In: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing.
pp. 49–57 (2022)

42. Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., Schiele, B.: Grounding of textual
phrases in images by reconstruction. In: European Conference on Computer Vision.
pp. 817–834. Springer (2016)

43. Shih, K.J., Singh, S., Hoiem, D.: Where to look: Focus regions for visual question
answering. In: CVPR. pp. 4613–4621 (2016)

44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

45. Singh, A., Natarajan, V., Shah, M., Jiang, Y., Chen, X., Batra, D., Parikh,
D., Rohrbach, M.: Towards vqa models that can read. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 8317–8326
(2019)

46. Song, H., Kim, M., Park, D., Shin, Y., Lee, J.G.: Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learn-
ing Systems pp. 1–19 (2022). https://doi.org/10.1109/TNNLS.2022.3152527

47. Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., Dai, J.: Vl-bert: Pre-training of
generic visual-linguistic representations. arXiv preprint arXiv:1908.08530 (2019)



32 D. Rigoni et al.

48. Tan, H., Bansal, M.: Lxmert: Learning cross-modality encoder representations from
transformers. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). pp. 5100–5111 (2019)

49. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 9627–9636 (2019)

50. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696
(2022)

51. Wang, H., Wang, H., Xu, K.: Categorizing concepts with basic level for vision-to-
language. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (June 2018)

52. Wang, L., Huang, J., Li, Y., Xu, K., Yang, Z., Yu, D.: Improving weakly super-
vised visual grounding by contrastive knowledge distillation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 14090–
14100 (2021)

53. Wang, Q., Tan, H., Shen, S., Mahoney, M.W., Yao, Z.: Maf: Multimodal
alignment framework for weakly-supervised phrase grounding. arXiv preprint
arXiv:2010.05379 (2020)

54. Wang, R., Qian, Y., Feng, F., Wang, X., Jiang, H.: Co-vqa: Answering by inter-
active sub question sequence. In: Findings of the Association for Computational
Linguistics: ACL 2022. pp. 2396–2408 (2022)

55. Wang, S., Wang, R., Yao, Z., Shan, S., Chen, X.: Cross-modal scene graph match-
ing for relationship-aware image-text retrieval. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV) (March 2020)

56. Wang, X., Zhang, S., Yu, Z., Feng, L., Zhang, W.: Scale-equalizing pyramid con-
volution for object detection. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 13359–13368 (2020)

57. Xu, M., Zhang, Z., Hu, H., Wang, J., Wang, L., Wei, F., Bai, X., Liu, Z.: End-
to-end semi-supervised object detection with soft teacher. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 3060–3069 (2021)

58. Yang, J., Li, C., Gao, J.: Focal modulation networks. arXiv preprint
arXiv:2203.11926 (2022)

59. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation
for object detection. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 9657–9666 (2019)

60. Yao, Y., Chen, Q., Zhang, A., Ji, W., Liu, Z., Chua, T.S., Sun, M.: Pevl:
Position-enhanced pre-training and prompt tuning for vision-language models.
arXiv preprint arXiv:2205.11169 (2022)

61. Yu, Z., Yu, J., Cui, Y., Tao, D., Tian, Q.: Deep modular co-attention networks
for visual question answering. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 6281–6290 (2019)

62. Yu, Z., Yu, J., Xiang, C., Zhao, Z., Tian, Q., Tao, D.: Rethinking diversified and
discriminative proposal generation for visual grounding. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence. pp. 1114–1120 (2018)

63. Zhang, H., Niu, Y., Chang, S.F.: Grounding referring expressions in images by
variational context. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4158–4166 (2018)



Cleaner categories improve object detection and visual-textual grounding 33

64. Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L.M., Shum, H.Y.: Dino:
Detr with improved denoising anchor boxes for end-to-end object detection. arXiv
preprint arXiv:2203.03605 (2022)

65. Zhang, H., Zhang, P., Hu, X., Chen, Y.C., Li, L.H., Dai, X., Wang, L., Yuan, L.,
Hwang, J.N., Gao, J.: Glipv2: Unifying localization and vision-language under-
standing. arXiv preprint arXiv:2206.05836 (2022)

66. Zhang, Q., Lei, Z., Zhang, Z., Li, S.Z.: Context-aware attention network for image-
text retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2020)

67. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based
and anchor-free detection via adaptive training sample selection. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. pp.
9759–9768 (2020)

68. Zhou, B., Tian, Y., Sukhbaatar, S., Szlam, A., Fergus, R.: Simple baseline for visual
question answering. arXiv preprint arXiv:1512.02167 (2015)

69. Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J., Gao, J.: Unified vision-language
pre-training for image captioning and vqa. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 34, pp. 13041–13049 (2020)


