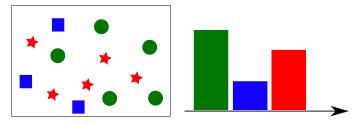
Query-by-Example Image Retrieval using Visual Dependency Representations

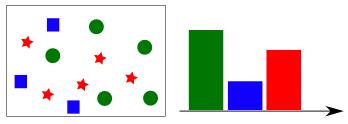
Desmond Elliott, Victor Lavrenko, Frank Keller

University of Edinburgh

August 24, 2014

In this talk, similar means same action




Typical Approaches to Image Retrieval

- Represent images as automatically extracted bag-of-visual-words (visterms)
 - ► SIFT, HoG, etc...

Typical Approaches to Image Retrieval

- Represent images as automatically extracted bag-of-visual-words (visterms)
 - SIFT, HoG, etc...

- Large heterogenous data sets
 - Corel 5K (5K images)
 - CIFAR-10 (60K images)
 - TinyImages (100K images)
 - • •

This Talk

- Represent images as annotated regions
 - Tighter connection to language than a visterm

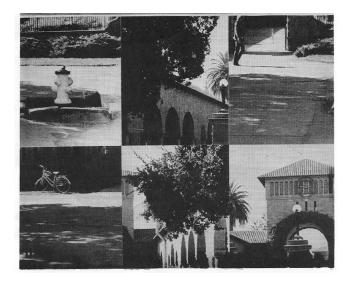
This Talk

- Represent images as annotated regions
 - Tighter connection to language than a visterm

- Smaller data set: 341 images depicting actions
 - Explore the effect of action types on accuracy

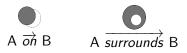
This Talk

- Represent images as annotated regions
 - Tighter connection to language than a visterm



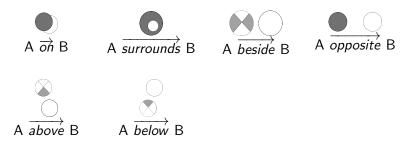
- Smaller data set: 341 images depicting actions
 - Explore the effect of action types on accuracy
- Focus on encoding the spatial relationships between regions

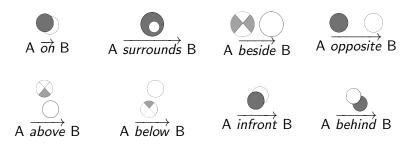
Humans benefit from consistent spatial relationships Biederman (1972)



Humans benefit from consistent spatial relationships Biederman (1972)

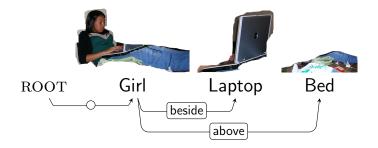
- Novel structured representation over image regions
 - Captures salient region-region relationships
 - Guided by the written description of the image
- Proved useful for describing actions in Elliott and Keller (2013)
- Inspired by dependency-syntax of language (Tesnière, 1953)
 - Tokens: image regions
 - Grammar: spatial relationships


- Novel structured representation over image regions
 - Captures salient region-region relationships
 - Guided by the written description of the image
- Proved useful for describing actions in Elliott and Keller (2013)
- Inspired by dependency-syntax of language (Tesnière, 1953)
 - Tokens: image regions
 - Grammar: spatial relationships


- Novel structured representation over image regions
 - Captures salient region-region relationships
 - Guided by the written description of the image
- Proved useful for describing actions in Elliott and Keller (2013)
- Inspired by dependency-syntax of language (Tesnière, 1953)
 - Tokens: image regions
 - Grammar: spatial relationships

- Novel structured representation over image regions
 - Captures salient region-region relationships
 - Guided by the written description of the image
- Proved useful for describing actions in Elliott and Keller (2013)
- Inspired by dependency-syntax of language (Tesnière, 1953)
 - Tokens: image regions
 - Grammar: spatial relationships

- Novel structured representation over image regions
 - Captures salient region-region relationships
 - Guided by the written description of the image
- Proved useful for describing actions in Elliott and Keller (2013)
- Inspired by dependency-syntax of language (Tesnière, 1953)
 - Tokens: image regions
 - Grammar: spatial relationships



Data

341 images from PASCAL VOC Action Recognition gold action labels

Data: 341 Images

► 10 types of actions

Reading

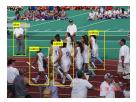
Ride horse

Phoning

Ride bike

Play instrument

Data: 341 Images


► 10 types of actions

Jumping

Running

Walking

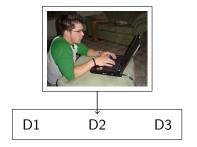
Data: 341 Images

► 10 types of actions

Jumping

Running

Walking

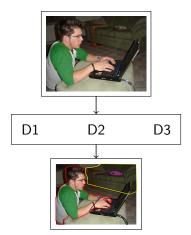


Use computer

Take photo

Data

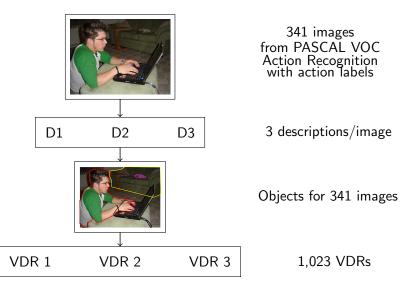
341 images from PASCAL VOC Action Recognition with action labels


3 descriptions/image

Data: 1,023 Descriptions from Mechanical Turk

A teenage girl is using a laptop. She is sitting on a bed.
 A girl is using a laptop. There is a lamp beside her.
 A girl is using a computer. There is a picture behind her.

Data

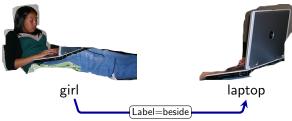


341 images from PASCAL VOC Action Recognition with action labels

3 descriptions/image

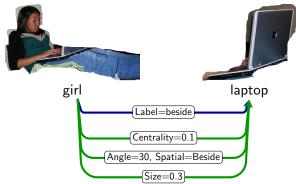
Objects for 341 images

Data



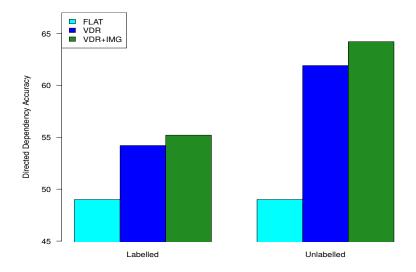
Automatic VDR Prediction

- Framed as a dependency parsing task
 - MaltParser (Nivre et al., 2004) seems unsuitable because it is incremental
- Construct a complete graph between all regions using MSTParser (McDonald et al., 2005)
 - Remove all features that encode the linear order of the input
 - Extract features from the image regions


Automatic VDR Prediction

- Framed as a dependency parsing task
 - MaltParser (Nivre et al., 2004) seems unsuitable because it is incremental
- Construct a complete graph between all regions using MSTParser (McDonald et al., 2005)
 - Remove all features that encode the linear order of the input
 - Extract features from the image regions

Automatic VDR Prediction


- Framed as a dependency parsing task
 - MaltParser (Nivre et al., 2004) seems unsuitable because it is incremental
- Construct a complete graph between all regions using MSTParser (McDonald et al., 2005)
 - Remove all features that encode the linear order of the input
 - Extract features from the image regions

VDR Parsing Experiment

- Task
 - Predict VDR over region-annotated image
- Data
 - 1,023 VDR data set
 - 10 fold cross-validation
- Evaluation
 - Unlabelled/labelled directed attachment accuracy
- Models
 - FLAT is a bag-of-regions baseline
 - VDR uses only input features
 - ▶ VDR+IMG also uses visual features

VDR Parsing Results

Query-by-Example Image Retrieval

Given a query example, find images of the same action

Matching function: cosine with *tf-idf* weighting

Query-by-Example Image Retrieval

Given a query example, find images of the same action

- Matching function: cosine with *tf-idf* weighting
- Evaluate with Mean Average Precision and Precison@10
 - Relevance means same action annotation

Query-by-Example Image Retrieval

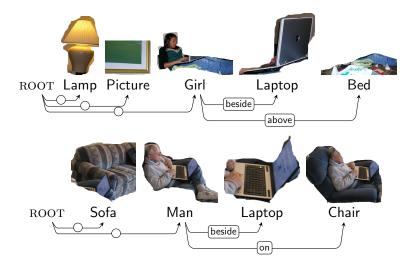
Given a query example, find images of the same action

- Matching function: cosine with tf-idf weighting
- Evaluate with Mean Average Precision and Precison@10
 - Relevance means same action annotation
- Models:
 - Bag-of-Regions representation
 - Visual Dependency Representation
 - Both use gold-standard object annotations

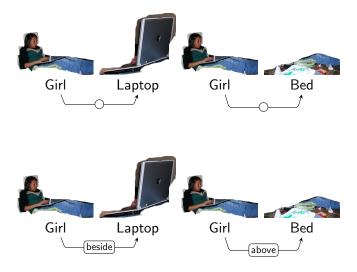
$cos(a, b) = \frac{a \cdot b}{||a|| \, ||b||}$

<person,laptop>·<person,laptop>

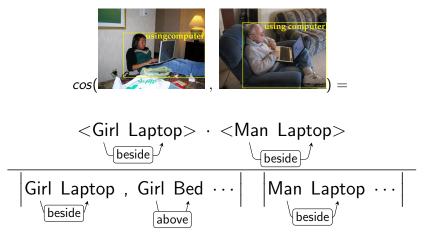
<person,laptop>·<person,laptop> person,laptop,…



<person,laptop>·<person,laptop> person,laptop,... person,laptop,...


How to compare two trees?

- How to compare two trees?
 - Decompose all edges into bigrams and trigrams


- How to compare two trees?
 - Decompose all edges into bigrams and trigrams

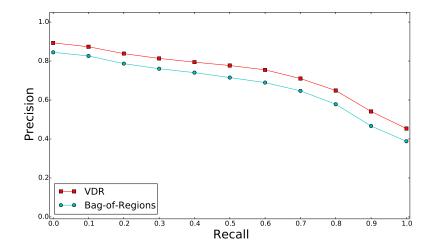
$\begin{array}{c|c} <\!\! \mathsf{Girl Laptop}\!\!> \cdot <\!\!\mathsf{Man Laptop}\!\!> \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$

=

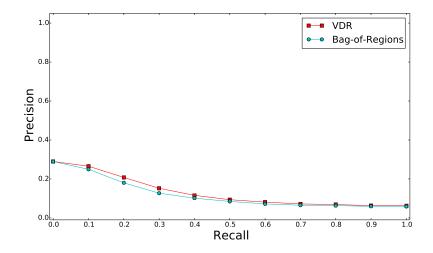
<>

-

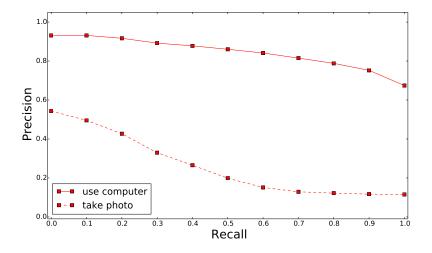
Results


	MAP	P@10
Bag-of-Regions	0.467	0.415

Results


	MAP	P@10
Bag-of-Regions	0.467	0.415
VDR	0.508*	0.451*

 \star : significantly better than Bag-of-Regions at p < 0.01


Transitive actions

Intransitive actions

"Light" actions - use computer / take photo

"Light" actions - use computer / take photo

Conclusions

- VDR increases the accuracy of query-by-example image retrieval compared to a bag-of-regions baseline
- Improvement depends on the type of action:
 - Most pronounced for transitive verbs
 - Least pronounced when no object is required for the action
- Future work:
 - Scaling to larger data sets
 - Different matching paradigms, e.g. RankSVM
 - Explore the effect of other languages on actions

Questions?

- VDRParser: http://github.com/elliottd/vdrparser
- Data: http://homepages.inf.ed.ac.uk/s0128959/dataset/
- http://homepages.inf.ed.ac.uk/s0128959/
- d.elliott@ed.ac.uk // @delliott

References

- Biederman, I. (1972). Perceiving real-world scenes. *Science*, 177(4043):77–80.
- Elliott, D. and Keller, F. (2013). Image Description using Visual Dependency Representations. In *Proceedings of the 2013 Conference* on *Empirical Methods in Natural Language Processing*, pages 1292–1302, Seattle, Washington, U.S.A.
- McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005). Non-projective dependency parsing using spanning tree algorithms. In Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pages 523–530, Vancouver, British Columbia, Canada.
- Nivre, J., Hall, J., and Nilsson, J. (2004). Memory-based dependency parsing. In *HLT-NAACL 2004 Workshop: Eighth Conference on Computational Natural Language Learning*, pages 49–56, Boston, Massachusetts, USA.
- Tesnière, L. (1953). *Esquisse d'une syntaxe structurale*. Librairie C. Klincksieck.