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Typical Approaches to Image Retrieval

I Represent images as automatically extracted
bag-of-visual-words (visterms)

I SIFT, HoG, etc...

I Large heterogenous data sets
I Corel 5K (5K images)
I CIFAR-10 (60K images)
I TinyImages (100K images)
I · · ·
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This Talk

I Represent images as annotated regions
I Tighter connection to language than a visterm

l l l
Girl Laptop Bed

I Smaller data set: 341 images depicting actions
I Explore the effect of action types on accuracy

I Focus on encoding the spatial relationships between regions

4/25



This Talk

I Represent images as annotated regions
I Tighter connection to language than a visterm

l l l
Girl Laptop Bed

I Smaller data set: 341 images depicting actions
I Explore the effect of action types on accuracy

I Focus on encoding the spatial relationships between regions

4/25



This Talk

I Represent images as annotated regions
I Tighter connection to language than a visterm

l l l
Girl Laptop Bed

I Smaller data set: 341 images depicting actions
I Explore the effect of action types on accuracy

I Focus on encoding the spatial relationships between regions

4/25



Humans benefit from consistent spatial relationships
Biederman (1972)
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Visual Dependency Representation (Elliott and Keller, 2013)

I Novel structured representation over image regions
I Captures salient region-region relationships
I Guided by the written description of the image

I Proved useful for describing actions in Elliott and Keller
(2013)

I Inspired by dependency-syntax of language (Tesnière, 1953)
I Tokens: image regions
I Grammar: spatial relationships

A −→on B A
−−−−−−→
surrounds B

A
−−−→
beside B A

−−−−−→
opposite B

A
−−−→
above B A

−−−→
below B A

−−−−→
infront B A

−−−−→
behind B
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Gold Standard Example

“A girl is using a laptop. She is sitting on a bed.”

root Girl Laptop Bed

beside

above
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Data

341 images
from PASCAL VOC
Action Recognition
gold action labels
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Data: 341 Images

I 10 types of actions

Reading Ride horse Phoning

Ride bike Play instrument
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Data

341 images
from PASCAL VOC
Action Recognition
with action labels

D2D1 D3 3 descriptions/image
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Data: 1,023 Descriptions from Mechanical Turk

1. A teenage girl is using a laptop. She is sitting on a bed.

2. A girl is using a laptop. There is a lamp beside her.

3. A girl is using a computer. There is a picture behind her.
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Data

341 images
from PASCAL VOC
Action Recognition
with action labels

D2D1 D3 3 descriptions/image

Objects for 341 images

VDR 2VDR 1 VDR 3 1,023 VDRs
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Automatic VDR Prediction

I Framed as a dependency parsing task
I MaltParser (Nivre et al., 2004) seems unsuitable because it is

incremental
I Construct a complete graph between all regions using

MSTParser (McDonald et al., 2005)
I Remove all features that encode the linear order of the input
I Extract features from the image regions

girl laptop

Label=beside

Centrality=0.1

Size=0.3

Angle=30, Spatial=Beside
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VDR Parsing Experiment

I Task
I Predict VDR over region-annotated image

I Data
I 1,023 VDR data set
I 10 fold cross-validation

I Evaluation
I Unlabelled/labelled directed attachment accuracy

I Models
I flat is a bag-of-regions baseline
I vdr uses only input features
I vdr+img also uses visual features
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VDR Parsing Results

Labelled Unlabelled
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VDR+IMG
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Query-by-Example Image Retrieval

I Given a query example, find images of the same action

I Matching function: cosine with tf-idf weighting

I Evaluate with Mean Average Precision and Precison@10
I Relevance means same action annotation

I Models:
I Bag-of-Regions representation
I Visual Dependency Representation
I Both use gold-standard object annotations
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Bag-of-Regions Representation

cos(a, b) = a · b
||a|| ||b||
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Visual Dependency Representation

I How to compare two trees?

I Decompose all edges into bigrams and trigrams

root Lamp Picture Girl Laptop Bed
beside

above

root Sofa Man Laptop Chair
beside

on

Girl Laptop Girl Bed

Girl Laptop Girl Bed
beside above
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Results

MAP P@10

Bag-of-Regions 0.467 0.415

VDR 0.508? 0.451?

?: significantly better than Bag-of-Regions at p < 0.01
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Transitive actions
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Intransitive actions
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“Light” actions - use computer / take photo
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Conclusions

I VDR increases the accuracy of query-by-example image
retrieval compared to a bag-of-regions baseline

I Improvement depends on the type of action:
I Most pronounced for transitive verbs
I Least pronounced when no object is required for the action

I Future work:
I Scaling to larger data sets
I Different matching paradigms, e.g. RankSVM
I Explore the effect of other languages on actions
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Questions?

I VDRParser: http://github.com/elliottd/vdrparser

I Data: http://homepages.inf.ed.ac.uk/s0128959/dataset/

I http://homepages.inf.ed.ac.uk/s0128959/

I d.elliott@ed.ac.uk // @delliott

25/25

http://github.com/elliottd/vdrparser
http://homepages.inf.ed.ac.uk/s0128959/dataset/
http://homepages.inf.ed.ac.uk/s0128959/


References

Biederman, I. (1972). Perceiving real-world scenes. Science,
177(4043):77–80.

Elliott, D. and Keller, F. (2013). Image Description using Visual
Dependency Representations. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages
1292–1302, Seattle, Washington, U.S.A.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005).
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