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In this talk, similar means same action
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Typical Approaches to Image Retrieval

> Represent images as automatically extracted
bag-of-visual-words (visterms)

» SIFT, HoG, etc...
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> Large heterogenous data sets

Corel 5K (5K images)
CIFAR-10 (60K images)
Tinylmages (100K images)
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This Talk

» Represent images as annotated regions
» Tighter connection to language than a visterm
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This Talk

» Represent images as annotated regions
» Tighter connection to language than a visterm

T 7

Girl Laptop Bed

» Smaller data set: 341 images depicting actions
» Explore the effect of action types on accuracy

» Focus on encoding the spatial relationships between regions
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Humans benefit from consistent spatial relationships
Biederman (1972)
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Visual Dependency Representation (Elliott and Keller, 2013)

» Novel structured representation over image regions
» Captures salient region-region relationships
» Guided by the written description of the image

» Proved useful for describing actions in Elliott and Keller
(2013)
» Inspired by dependency-syntax of language (Tesniere, 1953)
» Tokens: image regions
» Grammar: spatial relationships
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Visual Dependency Representation (Elliott and Keller, 2013)

» Novel structured representation over image regions
» Captures salient region-region relationships
» Guided by the written description of the image
» Proved useful for describing actions in Elliott and Keller
(2013)
» Inspired by dependency-syntax of language (Tesniere, 1953)
» Tokens: image regions
» Grammar: spatial relationships
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Gold Standard Example

Laptop Bed
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Data

341 images

from PASCAL VOC

Action Recognition
gold action Tabels

8/25



Data: 341 Images

> 10 types of actions

Ride bike o PIay instrument
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Data: 341 Images

> 10 types of actions

Jumping Running Walking

Use computer Take photo
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Data

341 images

from PASCAL VOC

Action Recognition
with action labels

3 descriptions/image

10/25



Data: 1,023 Descriptions from Mechanical Turk

1. A teenage girl is using a laptop. She is sitting on a bed.
2. A girl is using a laptop. There is a lamp beside her.

3. A girl is using a computer. There is a picture behind her.

11/25



Data
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with action Tabels

3 descriptions/image

Objects for 341 images
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Data

341 images

from PASCAL VOC

Action Recognition
with action Tabels

3 descriptions/image

Objects for 341 images

VDR 1 VDR 2 VDR 3 1,023 VDRs
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Automatic VDR Prediction

» Framed as a dependency parsing task
» MaltParser (Nivre et al., 2004) seems unsuitable because it is
incremental
» Construct a complete graph between all regions using
MSTParser (McDonald et al., 2005)
» Remove all features that encode the linear order of the input
» Extract features from the image regions
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Automatic VDR Prediction

» Framed as a dependency parsing task
» MaltParser (Nivre et al., 2004) seems unsuitable because it is
incremental
» Construct a complete graph between all regions using
MSTParser (McDonald et al., 2005)
» Remove all features that encode the linear order of the input
» Extract features from the image regions

laptop
Label=beside
Centrality=0.1

Angle=30, Spatial=Beside
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VDR Parsing Experiment

> Task
» Predict VDR over region-annotated image
» Data

» 1,023 VDR data set
» 10 fold cross-validation

» Evaluation
» Unlabelled/labelled directed attachment accuracy
> Models

» FLAT is a bag-of-regions baseline
» VDR uses only input features
» VDRA+IMG also uses visual features
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VDR Parsing Results

Directed Dependency Accuracy
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Query-by-Example Image Retrieval

> Given a query example, find images of the same action
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» Matching function: cosine with tf-idf weighting
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Query-by-Example Image Retrieval

» Given a query example, find images of the same action

e —

» Matching function: cosine with tf-idf weighting

» Evaluate with Mean Average Precision and Precison@10
» Relevance means same action annotation
» Models:
» Bag-of-Regions representation
» Visual Dependency Representation
» Both use gold-standard object annotations
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Bag-of-Regions Representation

__a-b
cos(a, b) = i
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Bag-of-Regions Representation

playing
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Visual Dependency Representation

» How to compare two trees?

ROOT Lamp Picture Girl Laptop Bed
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Visual Dependency Representation

» How to compare two trees?
» Decompose all edges into bigrams and trigrams
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» How to compare two trees?
» Decompose all edges into bigrams and trigrams
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Visual Dependency Representation
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Visual Dependency Representation

<Girl Laptop> - <Man Laptop>

19/25



Visual Dependency Representation

<Girl Laptop> - <Man Laptop>

Girl Laptop , Girl Bed ‘ Man Laptop ’
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Visual Dependency Representation

playing
instrument |
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Visual Dependency Representation
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Visual Dependency Representation

playing
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‘Girl Laptop , Girl Bed ’ Man Trumpet ’
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Results

MAP  PQ@10
Bag-of-Regions 0.467  0.415
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Results

MAP  PQ@10
Bag-of-Regions 0.467  0.415
VDR 0.508* 0.451*

*: significantly better than Bag-of-Regions at p < 0.01
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Transitive actions
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Intransitive actions
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“Light” actions - use computer / take photo
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Conclusions

» VDR increases the accuracy of query-by-example image
retrieval compared to a bag-of-regions baseline
» Improvement depends on the type of action:

» Most pronounced for transitive verbs
» Least pronounced when no object is required for the action

» Future work:

» Scaling to larger data sets
» Different matching paradigms, e.g. RankSVM
» Explore the effect of other languages on actions
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Questions?

v

VDRParser: http://github.com/elliottd/vdrparser
Data: http://homepages.inf.ed.ac.uk/s0128959/dataset/

v

v

http://homepages.inf.ed.ac.uk/s0128959/
d.elliott@ed.ac.uk // @delliott

v
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