Experiments in Retrieval-Augmented Image Captioning

Pita Plamos Desmond Elliott

Department of Computer Science University of Copenhagen

Retrieval Augmented Generation

- Combine the power of in-weights learning with in-context adaptation through retrieval augmentation
- Given a datastore of facts, knowledge, documents, etc.
 - Combine the most relevant items from the datastore (d) with the input (x) for your task

Multimodal Retrieval Augmentation

Combine the most relevant items from the datastore with the input

Multimodal Retrieval Augmentation

Combine the most relevant items from the datastore with the input

Multimodal Retrieval Augmentation

Combine the most relevant items from the datastore with the input

Towards Text-Image Interleaved Retrieval

Xin Zhang^{1,2*}, Ziqi Dai^{1*}, Yongqi Li², Yanzhao Zhang, Dingkun Long Pengjun Xie, Meishan Zhang^{1†}, Jun Yu¹, Wenjie Li², Min Zhang¹ ¹Harbin Institute of Technology, Shenzhen ²The Hong Kong Polytechnic University {zhangxin2023,ziqi.dai}@stu.hit.edu.cn zhangmeishan@hit.edu.cn Release at https://github.com/vec-ai/wikiHow-TIIR

Towards Text-Image Interleaved Retrieval

Xin Zha Pengj Harbin Instit {zhangxi	WavRAG: Audio-Integrated Retrieval Augmented Generation for Spoken Dialogue Models
I	Yifu Chen ^{1,†} Shengpeng Ji ^{1,†} Haoxiao Wang ^{1,†} Ziqing Wang ³ Siyu Chen ¹ Jinzheng He ² Jin Xu ² Zhou Zhao ^{1,*}
	¹ Zhejiang University ² Alibaba Group ³ Beijing University of Technology [†] Equal contribution. * Corresponding author.
	Eve106298@163.com
	zhaozhou@zju.edu.cn

Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval Towards Text-Ima Hani Alomari Anushka Sivakumar **Andrew Zhang Chris Thomas** Xin Zha Virginia Tech Virginia Tech Virginia Tech Virginia Tech Pengj azhang42@vt.edu hani@vt.edu anushkas01@vt.edu chris@cs.vt.edu WavRAG: Aud ¹Harbin Instit {zhangxi Yifu Chen 1,† Sucuspens of Theorem 11 Jinzheng He² Jin Xu² Zhou Zhao ^{1,*} ¹ Zhejiang University ² Alibaba Group ³ Beijing University of Technology † Equal contribution. * Corresponding author. Eve106298@163.com zhaozhou@zju.edu.cn

Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval Win 7b. Hani Alomari Anushka Siyakumar Andrew Zhang Chris Thomas

Pengj Harbin Instit {zhangxi	WavRAG: Aud	Virginia Tech hani@vt.edu	Virginia Tech anushkas01@vt.edu	Virginia Tech azhang42@vt.edu
I		inzheng He ² Jin Xu ²		chnology

† Equal contribut Eve

zhac

VISA: Retrieval Augmented Generation with Visual Source Attribut

Xueguang Ma*,1 Shengyao Zhuang*2,3 Bevan Koopman^{2,3} Guido Zuccon³ Wenhu Chen¹ Jimmy Lin¹

Virginia Tech chris@cs.vt.edu

¹University of Waterloo ²CSIRO ³ University of Queensland x93ma@uwaterloo.ca, s.zhuang@uq.edu.au

Towards Text-Imag

Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval

Xin Zha Pengj Harbin Instit {zhangxi	v	VavR	AG:	Au	d
ī			~-	1 4	

Hani Alomari Virginia Tech hani@vt.edu

Anushka Sivakumar Virginia Tech anushkas01@vt.edu

Andrew Zhang Virginia Tech azhang42@vt.edu

Chris Thomas Virginia Tech chris@cs.vt.edu

OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval

Wei Yang*, Jingjing Fu[†], Rui Wang, Jinyu Wang, Lei Song, Jiang Bian Microsoft Research Asia

 $wy ang 6621 @ gmail.com, \{jifu, ruiwa, jinywan, lesong, jiabia\} @ microsoft.com, \{ifu, ruiwa, jinywan, lesong, jiabia\} @ microsoft.com, [ifu, ruiwa, jinywan, lesong, jiabia] @ microsoft.com, [ifu, ruiwa, jiabia$

eneration with Visual Source Attribut

yao Zhuang^{*2,3} Bevan Koopman^{2,3} Wenhu Chen¹ Jimmy Lin¹

²CSIRO ³ University of Queensland

o.ca, s.zhuang@uq.edu.au

Towards Text-Imag

Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval

com

Xin Zha	 -	
Pengj ¹ Harbin Instit	WavRAG: A	ud
{zhangxi		
τ	1	٠ ٠

Hani Alomari Virginia Tech hani@vt.edu Anushka Sivakumar Virginia Tech anushkas01@vt.edu Andrew Zhang Virginia Tech azhang42@vt.edu Chris Thomas Virginia Tech chris@cs.vt.edu

OMCM. Onebestuate Multiple Committee and Madelities for Efficient

S Ask in Any Modality

A Comprehensive Survey on Multimodal Retrieval-Augmented Generation

Mohammad Mahdi Abootorabi^{‡,†}, Amirhosein Zobeiri°, Mahdi Dehghani[¶], Mohammadali Mohammadkhani[§], Bardia Mohammadi[†], Omid Ghahroodi[†], Mahdieh Soleymani Baghshah^{§, *}, Ehsaneddin Asgari^{†, *}

[†]Qatar Computing Research Institute, [‡]Saarland University, [‡] Zuse School ELIZA, ^oUniversity of Tehran,

Max Planck Institute for Software Systems, [¶]K.N. Toosi University of Technology, [§]Sharif University of Technology

Correspondence: soleymani@sharif.edu and easgari@hbku.edu.qa

https://multimodalrag.github.io

eneration with Visual Source Attribut

yao Zhuang^{,*2,3} Bevan Koopman^{2,3} Wenhu Chen¹ Jimmy Lin¹

²CSIRO ³ University of Queensland

o.ca, s.zhuang@uq.edu.au

Towards Text-Ima

Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval

Xin Zha Pengj ¹ Harbin Instit {zhangxi	WavRAG: Aud	Hani Alomari Virginia Tech hani@vt.edu	Anushka Sivakumar Virginia Tech anushkas01@vt.edu	Andrew Zhang Virginia Tech azhang42@vt.edu	Chris Thomas Virginia Tech chris@cs.vt.edu
τ		MegaPairs: Massive Da	ata Synthesis for Univ	ersal Multimodal R	letrieval et le
^	MCM. Ol	Yueze Wang ² , l	ing Xiong ^{1*} , Zheng Liu ² Bo Zhao ⁴ , Chen Jason Z	hang ⁵ , Defu Lian ^{3†}	Xiao ² ,
A Comprehens	sive Survey o	Beijing U	oratory of Networking and S niversity of Posts and Telec jing Academy of Artificial I	ommunications	Source Attrib
Bardia Moha	i Abootorabi ^{‡♣†} , An ammadi [♠] , Omid Gh	³ University of Science and Technology of China ⁴ Shanghai Jiao Tong University, ⁵ The Hong Kong Polytechnic University {junjiebupt, zhengliu1026}@gmail.com, liandefu@ustc.edu.cn 1 1			-1
†Qatar Computing Research Institut Max Planck Institute for Software Systems, "K.N. Toosi University of Technology, "Sharif University of Technology"				ueensland	

o.ca, s.zhuang@uq.edu.au

Our Motivation

- Train lightweight image captioning models using frozen backbones
 - CLIPCap (Mokady et al. 2021), I-Tuning (Luo et al. 2023)
- ... and using retrieval augmentation to assist the decoder

Overview

1. Lightweight RAG Captioning

2. Lightweight **Multilingual** Training

3. Image-blind captioning

4. Understanding Multimodal RAG

SmallCap: Lightweight Image Captioning Prompted with Retrieval Augmentation

CVPR 2023

R. Ramos

B. Martins

D. Elliott Y. Kementchedjhieva

Lightweight Training trough Retrieval

 Given the success of retrieval augmented generation, can we extend this to multimodality with a lightweight training paradigm?

Retrieval System

- Build a datastore with high-dimensional dense vectors
 - FAISS: Facebook AI Similarity Search for nearest-neighbor search
 - Captions of images represented with CLIP embeddings
- Retrieve k nearest-neighbours captions from datastore
 - Image embedding compared against datastore caption vectors

Trained Cross-Attention Layers

- Autoregressive Transformer
 LMs only contain a multi-head
 self-attention mechanism
- We insert a randomly initialized
 cross-attention mechanism to
 attend to the visual encoder
 output embeddings

Experimental Setup

- Pretrained CLIP-ViT-B/32 and GPT/OPT backbone models
- Randomly initialize the cross-attention layer
- Train only on COCO in only 8 hours on 1 x 40GB NVIDIA A100 GPU

Low-rank cross-attention

$$\operatorname{Att}(\mathbf{Q}\mathbf{W}_i^Q,\mathbf{K}\mathbf{W}_i^K,\mathbf{V}\mathbf{W}_i^V)$$

$$W_i^K$$
, W_i^Q , W_i^V

$$\in \mathbf{R}$$
d_encoder x **d**

Attention rank	Params
d=64 (Full)	22M
d=16	7M
d=8	3.6M
d=4	1.8M

Results

- Outperform other lightweight approaches
- Effective with low-rank matrices: 4,8,16 << 64
- Larger pretrained decoders further improve performance

Importance of Retrieval Augmentation

With retrieval:

- Performance is stable across the range of cross-attention sizes
- Without retrieval:
 - Drop in performance
 - SmallCap model performance degrades at a higher rate

Training-Free Domain Transfer

 SmallCap was trained on COCO but we can easily swap the datastore

Qualitative Example from VizWiz

- some carrots potatoes garlic an onion and some chicken broth
- a selection of ingredients for soup includes carrots, meat, and prepackaged broth
- this is the makings of a meal with chicken and vegetables
- the meal has chicken, bread, and cole slaw

Generated caption:

a close up of a plate of food on a table

Qualitative Example from VizWiz

- some carrots potatoes garlic an onion and some chicken broth
- a selection of ingredients for soup includes carrots, meat, and prepackaged broth
- this is the makings of a meal with chicken and vegetables
- the meal has chicken, bread, and cole slaw

Generated caption:

a close up of a plate of food on a table

- a can of swanson fat free chicken broth
- a can of swanson brand chicken broth with less sodium
- a 14,5 ounce can of swanson branded chicken broth
- a can of swanson chicken broth on a table

Generated caption:

a can of swanson brand chicken broth on a table

Qualitative Example from VizWiz

- some carrots potatoes garlic an onion and some chicken broth
- a selection of ingredients for soup includes carrots, meat, and prepackaged broth
- this is the makings of a meal with chicken and vegetables
- the meal has chicken, bread, and cole slaw

- · a can of swanson fat free chicken broth
- a can of swanson brand chicken broth with less sodium
- a 14,5 ounce can of swanson branded chicken broth
- a can of swanson chicken broth on a table

Generated caption:

a close up of a plate of food on a table

Generated caption:

a can of swanson brand chicken broth on a table

"swanson" does not appear anywhere in the COCO training dataset

Q: What about multilingual captioning?

PAELLA: Parameter-Efficient Lightweight Language-agnostic Captioning Model

Findings of NAACL 2024

R. Ramos

E. Bugliarello

B. Martins

D. Elliott

Multilingual Image Caption Training

Common approach in the literature is to machine translate and train

Data-Efficient Multlingual Training

- Only train on a subset of COCO-35:
 - Sample uniformly across 35 languages
 - Match the size of the English COCO dataset

PAELLA Model

Experimental Protocol

- Encoder: Multilingual CLIP
- Decoder: XGLM-2.9B
- Training data:
 - 566K captions sampled from COCO-35
- Evaluation: XM-3600
 - 3600 geographically-diverse images
 - 36 languages with 100 captions per image
 - 5 low-resource languages (L5):
 - Bengali, Cusco Quechua,
 Maori, Swahili, Telugu

Example training images from COCO

Examples evaluation images from XM3600

Results

	Data	Trained O	L36	L5
PaLI	12B	17B	53.6	-
Lg coco-35	19M	2.6B	15.0	12.5
mBLIP: BLOOMZ-7B	135M	800M	23.4	6.7
BB+CC _{coco-35 + cc-35}	135M	800M	28.5	22.4
mBLIP: mT0-XL	489M	124M	28.3	7.9
PAELLA	566K	30M	26.2	20.7

PAELLA is competitive against models with 35-863x more training data, and 4-87x more trained parameters

Zero-shot Multilingual Transfer

- PAELLA_{mono} is a variant trained on 566K examples in English COCO
- Outperforms Lg trained on 19.8M examples in the machine translated
 COCO-35 dataset

	Data	Trained Θ	L36	L5
Lg: Thapliyal et al. coco-35	19M	2.6B	15.0	12.5
PAELLA _{mono}	566K _e	30M	15.5	12.1

Qualitative Example

类似图片显示:

ऐसी ही तस्वीरें दिखाती हैं:

Imágenes similares muestran:

Similar images show:

the owl is perched outside in front of the people an owl sitting a top a table during the daytime an owl is sitting on a perch at a camp site the fuzzy owl is sitting on a tree branch

A caption I can generate to describe this image in english is:

en: "an owl sitting on top of a tree"

es: "un búho sentado en una rama de un árbol" (an owl sitting on a tree branch)

hi: "एक उल्लू एक पेड़ की टहनी पर बैठा है" (an owl is sitting on a tree branch)

zh: "一只 猫头鹰 站在 树上" (an owl standing in a tree)

NoRAG

en: "a large black and white picture of a bird"

es: "un pájaro posado en la parte superior de un edificio" (a bird perched on the top of a building)

hi: "एक पेड़ के पास खड़ा एक पक्षी" (a bird standing near a tree)

zh: "一只 长颈鹿 坐在 树枝 上" (a giraffe sitting on a branch)

Q: Do you even train?

LMCap: Few-shot Multilingual Image Captioning by Retrieval Augmented Language Model Prompting

Findings of ACL 2023

R. Ramos

B. Martins

D. Elliott

 Enable models to "communicate" with each other through their output labels, prompting, and ranking

$$f_{\rm VLM}^3(f_{\rm LM}^2(f_{\rm VLM}^1({\rm image})))$$

 Enable models to "communicate" with each other through their output labels, prompting, and ranking

$$f_{\rm VLM}^3(f_{\rm LM}^2(f_{\rm VLM}^1({\rm image})))$$
 detect things

 Enable models to "communicate" with each other through their output labels, prompting, and ranking

I am an intelligent image captioning bot. This image is a {img_type}. There {num_people}. I think this photo was taken at a {place1}, {place2}, or {place3}. I think there might be a {object1}, {object2}, {object3},... in this {img_type}. A creative short caption I can generate to describe this image is:

 Enable models to "communicate" with each other through their output labels, prompting, and ranking

I am an intelligent image captioning bot. This image is a {img_type}. There {num_people}. I think this photo was taken at a {place1}, {place2}, or {place3}. I think there might be a {object1}, {object2}, {object3},... in this {img_type}. A creative short caption I can generate to describe this image is:

 Enable models to "communicate" with each other through their output labels, prompting, and ranking

I am an intelligent image captioning bot. This image is a {img_type}. There {num_people}. I think this photo was taken at a {place1}, {place2}, or {place3}. I think there might be a {object1}, {object2}, {object3},... in this {img_type}. A creative short caption I can generate to describe this image is:

SM (ours): This image shows an inviting dining space with plenty of natural light.

ClipCap: A wooden table sitting in front of a window.

What does it mean to only understand symbols as defined by other symbols?

 Prompt with N-shot examples of transforming captions into the target language

Experimental Setup

- XGLM Language Model 564M 7.6B params
- Multilingual CLIP (LAION)
- Experiments on XM3600 (Thapliyal et al. 2022)
 - 100 images in 36 languages
- No training or fine-tuning on any captioning data.

Results

Params	RAM	en	es	hi	zh
564M	6G	0.411	0.094	0.030	0.146
1.7B	12G	0.637	0.143	0.066	0.272
2.9B	16G	0.767	0.454	0.334	0.584
7.5B	22G	0.787	0.489	0.365	0.644

Competitive performance compared to supervised models

Need at least 2.9B parameter decoder for multilingual generation

Qualitative Example

two people and a kid skiing along a trail
an adult and two children are cross country skiing
two men and a little boy are skiing on a snowy spot
two adults on skis with a child on skis between them

Qualitative Example

Retrieved Examples

two people and a kid skiing along a trail
an adult and two children are cross country skiing
two men and a little boy are skiing on a snowy spot
two adults on skis with a child on skis between them

Generated Captions

ENG: two people and a kid skiing along a trail

ESP: dos hombres y un niño esquiando en una pista de nieve

ZHO: 两个大人和一个小男孩在雪地上滑雪

Q: How does all of this work?

Understanding Retrieval Robustness for Retrieval-augmented Image Captioning

ACL 2024

W. Li

J. Li

R. Ramos

R. Tang

D. Elliott

Revisiting Swanson Soup

- In Ramos et al. CVPR 2023, we observed the power of in-context learning and retrieval-augmentation
- But what is happening here?
- How is the model using the retrieved captions?

- a can of swanson fat free chicken broth
- a can of swanson brand chicken broth with less sodium
- a 14,5 ounce can of swanson branded chicken broth
- a can of swanson chicken broth on a table

Generated caption:

a can of swanson brand chicken broth on a table

Measuring Robustness

- Is SmallCap sensitive to the quality of the retrieved captions?
 - Top-ranked items
 - Random items
 - Lower-ranked items

Question: If the model is so affected by random captions, then is it more like a paraphrasing model that ignores the visual content?

Majority Token Analysis

• Given a list of K retrieved captions, we can create an ordered list of the frequency that each unique token appears in the captions:

$$egin{aligned} C := \{C_{T_1}, C_{T_2}, \dots, C_{T_U}\} \ C_{T_i} = \sum_{k=1}^K \mathbf{1}_{T_i \in R_n} \end{aligned}$$

• Majority Token: If token T_i appears at least K/2 times, then we define it as majority token in the retrieved captions:

$$M_T:=\{C_{T_i},C_{T_i},\ldots\} \ \ ext{ s.t. } \ C_{T_u}\geq K/2 \ orall \ U$$

Majority Tokens Example

Majority Token:

$$M_T:=\{C_{T_i},C_{T_i},\ldots\} \ \ ext{ s.t. } \ C_{T_u}\geq K/2 \ orall \ U$$

R₁: Three people skiing through a forest

R₂: An older woman in a wheelchair holding a white teddy

R₃: A man and a woman sit holding a teddy bear

Majority Tokens: "teddy", "bear", "woman"

Known Good / Known Bad Captions

- With Majority Tokens, we can force an experimental setup with known good or known bad retrieved captions
- Force an asymmetry:
 - 2 Good captions ~ 1 Bad caption ⇒ useful majority tokens?
 - 1 Good caption ~ 2 Bad captions ⇒ harmful majority tokens?
- Good: high-ranked caption
 Bad: random caption

Known Good / Known Bad Captions

- With Majority Tokens, we can force an experimental setup with known good or known bad retrieved captions
- Force an asymmetry:
 - 2 Good captions ~ 1 Bad caption ⇒ useful majority tokens?
 - 1 Good caption ~ 2 Bad captions ⇒ harmful majority tokens?
- Good: high-ranked caption Bad: random caption
- Results
 - 2 Good ~ 1 Bad: 86% of generated captions contain a majority token
 - 1 Good ~ 2 Bad: 21%

Integrated Gradients Input Attribution

Which input tokens are most/least important in the model output?

Self- and Cross-Attention Analysis

- What can we learn about SmallCap by inspecting what it attends to in the textual and the visual inputs?
- Track the location of the maximally-attended inputs

$$\mathbb{1}[I_n(i,j)] = \begin{cases} 1 & \text{if } \arg\max_z Att(j,z)_i \in S_n \\ 0 & \text{otherwise} \end{cases}$$

Self-Attention Analysis

Self-Attention Analysis

Self-Attention Analysis

Self-attention is maximally attending to the BOS token

- <BOS>
- Prefix

RetrievalSuffixGeneration

HEAD 3

HEAD 7

Cross-Attention Analysis

CLS
Others

The cross-attention layers focus on the "summary" image CLS embedding

Cross-Attention Analysis

The cross-attention layers focus on the "summary" image CLS embedding

Cross-attention to **image** patches only emerges at the final layers of the LM

Improving Robustness

- Given that the model appears to be strongly guided by retrieved captions, can we train the model to be less reliant on this?
 - Yes! We can create less-perfect retrieval lists during training
- Sample-K: randomly choose k/N retrieved captions
- C-Sample-K: only use the most relevant caption, and k-1 randomly sampled captions in the prompt

Experimental Protocol

• Encoder: CLIP ViT-B/32

Decoder: OPT-125M

Training data: MS COCO

Example evaluation images from the NoCaps dataset

- Evaluation with CIDEr
 - MS COCO
 - VizWiz
 - NoCaps

In-Domain Results

Improved performance with smaller retrieval sets

Out-of-Domain Results

Improvements in two out-of-domain datasets

Qualitative Examples

- a man posing with a surfboard on an elevator
- a woman sitting on a bench next to a man in a hat
- a greyhound dog lying on an unmade bed
- a pink teddy bear and a brown teddy bear sitting on wooden rods

Sample-k

a person riding a horse on top of a beach

Top-k

a person sitting on a bench on a beach

- a train with the numbers 60016 is heading down the tracks
- a black and white photo of two people holding hands in a city on a rainy day
- this youngster has a boogie board to ride the smaller waves
- a wooden entertainment center containing a television set

Sample-k

a close up of a fire hydrant on a sidewalk

Top-k

a close up of a person on a sidewalk

Wrap-up

Open Questions

- How many of these observations apply to visual prefix models?
 - I think we will still observe the problems associated with majority tokens
- What is the best way to construct N-shot examples for mRAG?
 - Demonstrate the diversity of the tasks / target languages / visual inputs
- When will we have usable multimodal ICL for multimodal RAG?
 - We have been trying to make progress on this with ImageChain

IMAGECHAIN: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models

Danae Sánchez Villegas* Ingo Ziegler* Desmond Elliott

Final Conclusions

- Retrieval-augmentation is a powerful approach to building lightweight image captioning models that can easily adapt to new domains
 - Improve lightweight trained models
 - Improve zero-training models
 - Enable zero-shot multilingual transfer
- Open questions about how to make RAG-based models more robust and reliable in practice

References

- R. Ramos, B. Martins, and D. Elliott. Few-shot Multilingual Image Captioning by Retrieval Augmented Language Model Prompting. ACL 2023.
- R. Ramos, B. Martins, D. Elliott, and Y. Kementchedjhieva. SmallCap: Lightweight Image Captioning Prompted with Retrieval Augmentation. CVPR 2023.
- R. Ramos, E. Bugliarello, B. Martins, and D. Elliott. PAELLA: Parameter-Efficient Lightweight Language-Agnostic Captioning Model. NAACL 2024.
- W. Li, J. Li, R. Ramos, R. Tang, and D. Elliott. **Understanding Retrieval Robustness** for Retrieval-augmented Image Captioning. ACL 2024.
- D. S. Villegas, I. Ziegler, and D. Elliott. ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models.