Multilingual Radiology Report Classification

Desmond Elliott

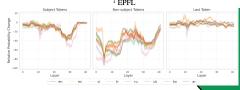
Language and Multimodal Processing Group
Department of Computer Science
University of Copenhagen

Medical

This talk

How Do Multilingual Language Models Remember Facts?

Constanza Fierro† Negar Foroutan‡ Desmond Elliott† Anders Søgaard†
† Department of Computer Science, University of Copenhagen



Multilingual

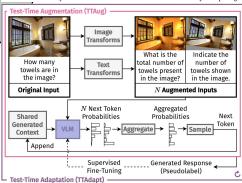
Everyone else here today

Multimodal

EFFICIENT TEST-TIME SCALING
FOR SMALL VISION-LANGUAGE MODELS

Mehmet Onurcan Kaya^{1,2} Desmond Elliott^{3,2} Dim P. Papadopoulos^{1,2}

¹ Technical University of Denmark ² Pioneer Center for AI ³ University of Copenhagen

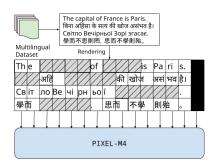


Multilingual Pretraining for Pixel Language Models

Ilker Kesen[†] Jonas F. Lotz^{†,‡} Ingo Ziegler[†] Phillip Rust[†] Desmond Elliott[†]

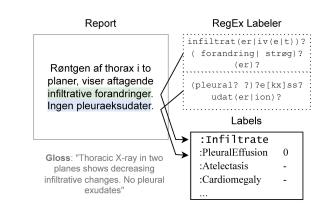
[†]Department of Computer Science, University of Copenhagen

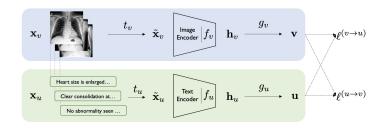
[‡]ROCKWOOL Foundation Research Unit



Radiology Report Classification

- Backbone of training imaging classification systems
 - regex is everywhere
 - SSL emerging as an alternative
 - This is compute-intensive compared to LLM knowledge
- Not much publicly shared data
 - MIMIC-CXR, CheXpert, etc.
- Disjoint findings labels
 - MIMIC-CXR: 15 findings
 - PadChest: 49 findings





When are radiology reports useful for training medical image classifiers?

Herman Bergström^{*1}, Zhongqi Yue¹, and Fredrik D. Johansson¹
Department of Computer Science & Engineering,
Chalmers University of Technology and University of Gothenburg

MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations

Mehmet Yigit Avci¹, Pedro Borges¹, Paul Wright¹, Mehmet Yigitsoy², Sebastien Ourselin¹, and Jorge Cardoso¹

School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
² deepc GMBH, Munich, Germany

Are Large Vision Language Models Truly Grounded in Medical Images? Evidence from Italian Clinical Visual Question Answering

Federico Felizzi^{1,*}, Olivia Riccomi¹, Michele Ferramola², Francesco Andrea Causio^{3,1}, Manuel Del Medico^{3,1,*}, Vittorio De Vita^{3,1}, Lorenzo De Mori^{1,4}, Alessandra Piscitelli^{1,5}, Pietro Eric Risuleo^{3,1}, Bianca Destro Castaniti^{1,5}, Antonio Cristiano^{3,1}, Alessia Longo⁶, Luigi De Angelis^{1,7}, Mariapia Vassalli^{1,5}, Marcello Di Pumpo^{3,1}

¹SIIAM, Rome, Italy ²NSBProject, Mantova, Italy

³Dept. of Life Sciences & Public Health, UCSC, Rome, Italy

⁴ASL RM 4, Bracciano, Italy ⁵UCSC, Rome, Italy

⁶Univ. Paris Cité, France ⁷Univ. of Pisa, Italy *Corresp. author: federico.felizzi@gmail.com

How can we combine publicly available radiology report resources into a single classification model?

Alice

MOSAIC: A Multilingual, Taxonomy-Agnostic, and Computationally Efficient Approach for Radiological Report Classification

Alice Schiavone^{1,2}, Marco Fraccaro³, Lea Marie Pehrson^{1,4,5}, Silvia Ingala^{4,6}, Rasmus Bonnevie³
Michael Bachmann Nielsen⁵, Vincent Beliveau⁷, Melanie Ganz^{1,2}, Desmond Elliott¹

¹Department of Computer Science, University of Copenhagen

²Neurobiology Research Unit, Copenhagen University Hospital

³Unumed Aps, ⁴Department of Diagnostic Radiology, Copenhagen University Hospital

⁵Department of Clinical Medicine, University of Copenhagen

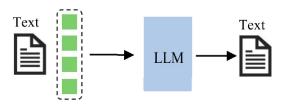
⁶Cerebriu A/S, ⁷Institute for Human Genetics, Medical University of Innsbruck

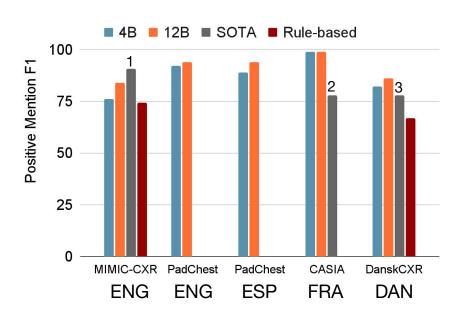
Desiderata

- Fully open source: keep your medical data on-site
- Accessible: run and train on inexpensive general-purpose GPUs
 - training and inference on an 24GB RTX 3090
- Multilingual: works for any EU27 major language
 - only evaluated in 4 languages due to data availability
- Flexible: adapts to different findings labels with minimal intervention
 - LLMs are reservoirs of written human knowledge

MOSAIC-4B and 12B

- Finetuned on 10K reports in English, Spanish, and French
 - QLoRA optimization on the Q,K,V, FF, and Output layers
 - Need maximum of 16.2G
 VRAM and 33 minutes for SFT
- Prompt-based inference that can predict up to 68 findings





1. CheX-GPT, 2. CASIA-CLS, 3. DanskBERT

Prompt-based Inference

Require JSON-structured responses

You are a helpful radiology assistant. Given a radiology report, classify each abnormality into a class. Output a valid JSON with each abnormality as key, and the class as value. The keys must be {findings}. The values can be one of {classes}. The values have the following interpretation:

Define style of positive/uncertain findings

(1) the abnormality was mentioned, even with uncertainty, in the report, e.g. 'A large pleural effusion', 'The cardiac contours are stable.', 'The cardiac size cannot be evaluated.';

Negative mentions

(2) the abnormality was negatively mentioned in the report; e.g. 'No pneumothorax.'

Datasets

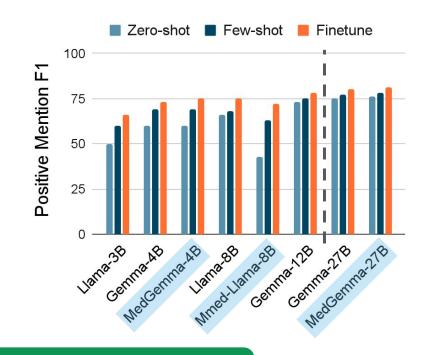
Dataset	Language	Modality	Number of Findings	Avg. Chars	Mention Classes	Train	Dev	Test
MIMIC-CXR	en	Chest X-Ray	14	760	$+,-,\sim$	535	50	100
PadChest-GR	es, en	Chest X-Ray	49	115	+	1951	100	879
CASIA-CXR	fr	Chest X-Ray	5	400	+	7677	100	3334
DanskCXR	da	Chest X-Ray	48	312	+,-	1600	125	750
DanskMRI	da	Brain MRI	3	1941	$+,-,\sim$	194	50	345

- Focus on publicly available datasets
 - 194-7600 training examples
 - 115–1941 characters
 - 3–49 findings across variable number of mention classes
- DanskMRI evaluates performance on different imaging modality

Which Backbone LLM?

Setups:

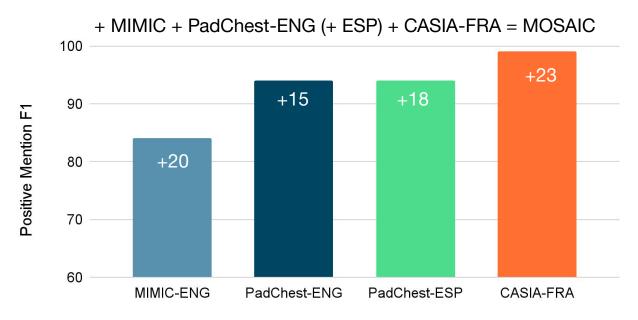
- Zero-shot prompting
- Few-shot prompting
- Dataset-specific fine-tuning
- Gemma and LLaMA LLMs
 - 3B–27B variants
 - General and medical domain



Finding 1: No substantial difference between general / medical domain models

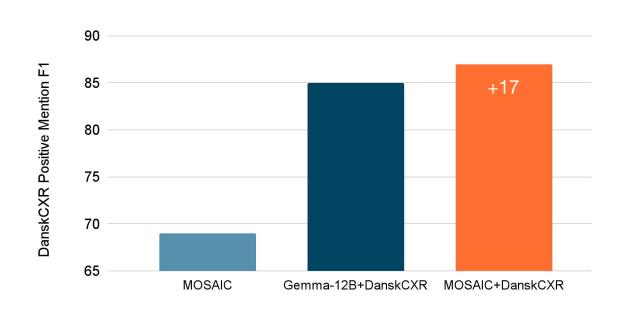
Finetuning on Public Datasets

How does performance improve as we train on different label sets?



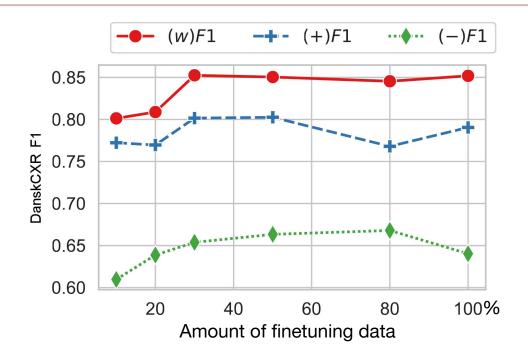
Finding 2: Improvements are additive and do not seem to interfere

New Dataset Adaptation



Finding 3: MOSAIC is a better starting point for new data

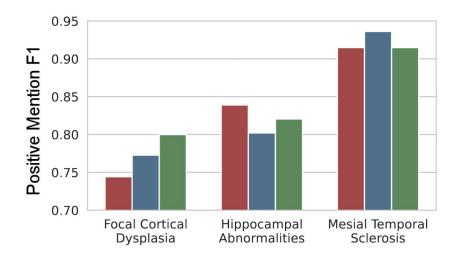
How Much Data Do You Need?



Finding 4: You don't need much data if you start from MOSAIC

Different Imaging Modality

- Adapt MOSAIC to predicting three findings in Epilepsy MRI reports
 - Gemma-12B SFT on 196 reports
 - MOSAIC-12B
 - + ENG translation of 196 reports



Finding 5: MOSAIC can be repurposed to a new modality

Open Directions

- Multimodal inputs could improve performance but how to handle reports from different imaging modalities
- Simple text-only augmentation could substantially improve performance [Aepli and Sennrich, 2022; Kaya et al. 2025]
- Multi-agent LLMs could better handle different mention classes
- Broken tokenizers could be fixed to further improve performance
 - See, e.g. TokenDist [Dobler et al. 2025]
- Synthetic data generation using self-consistency [Wang et al. 2023]

Conclusions

- Multilingual LLMs are radiology report classifiers
 - Handle different label sets
 - Handle reports from different imaging modalities
- Multilingual multi dataset SFT can reduce the total amount of data that needs expert annotation
 - Focus the time of our clinical colleagues on labelling lower-frequency findings or difficult examples
- MOSAIC is open source
 - Please tell us if it works for your data and language
 - https://github.com/aliswh/mosaic

References

- A. Schiavone M. Fraccaro, L. M. Pehrson, S. Ingala, R. Bonnevie, M. B. Nielsen, V. Beliveau,
 M. Ganz, and D. Elliott. 2025. MOSAIC: A Multilingual, Taxonomy-Agnostic, and
 Computationally Efficient Approach for Radiological Report Classification
- K. Dobler, D. Elliott, and G. de Melo. 2025. Token Distillation: Attention-aware Input Embeddings For New Tokens.
- M. O. Kaya, D. Elliott, and D. P. Papadopoulos. 2025. Efficient Test-Time Scaling for Small Vision-Language Models.
- Aepli and Sennrich. ACL 2022. Improving Zero-Shot Cross-lingual Transfer Between Closely Related Languages by Injecting Character-Level Noise.
- Wang et al. ICLR 2023. Self-Consistency Improves Chain of Thought Reasoning in Language Models.