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Warning: The final part of the talk contains dataset samples that are racist in nature.
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The African Computer Vision Summer School (ACVSS) unites
outstanding African students and researchers with leading computer vision and Al experts.



How can we create high-

quality NLP for all written
languages?




NLP is an Open Vocabulary Problem

e There are 3,000 written languages . N
o 400 with >1M speakers \paos
o NLP usually covers 100 languages Basquel  andarn
o Technological exclusion for billions s Dh\'T\kEhglh

e NLP is an open vocabulary problem where the units are either

o “Trained” over a corpus: Byte-Pair Encoding
=  Unseen tokens not in the vocabulary without a byte-level backoff

o Corpus independent: characters / bytes
=  Need to deal with longer sequence lengths

van Esch et al. Writing System and Speaker Metadata for 2,800+ Language Varieties. LREC 2022.
Joshi et al. The State and Fate of Linguistic Diversity and Inclusion in the NLP World. ACL 2020.



The Vocabulary Bottleneck

The vocabulary of language models creates a

bottleneck in two locations: |
1. Representational bottleneck in the Embedding layer :
|

2. Computational bottleneck in the token output layer  —
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Where’s the sweet spot?

Long sequence lengths

A
Bytes (ByT5)

(CANINE, CharFormer) Characters
Small subword vocab (BERT: 30K)
(RoBERTa: 50K) Medium subword vocab
Full unicode coverage (ByT5, CANINE)

(XML-R: 250K) Large subword vocab

Words (word2vec: 3M)

Large vocabulary



Alternative: treat language as vision
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Alternative: treat language as vision




Alternative: treat language as vision

Render text
as an image
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Alternative: treat language as vision
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Inspiration

VISUAL EMBEDDER o convolve slices STANDARD TRANSFORMER
—>» __This __is _a__sentence .
- sgmented) unicode string
st ein Satz | o o
| er
o render to image =

(w5

Das ist ein Satz.
nicode input

1. Robust Open Vocabulary Translation

from Visual Text Representations
(Salesky et al. EMNLP 2021)

You can learn a translation model that transforms

from visual representations to discrete tokens




Inspiration
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2. Masked Autoencoders are

Scalable Visual Learners
(He et al. 2021)

You can learn a vision encoder without any label

supervision, so why not a language encoder?




Inspiration

Learning Transferable Visual Models From Natural Language Supervision 38

‘ SST

Montias ... pumps a lot of energy into his
nicely nuanced narrative and surrounds

e e = B/32 70.8
> B/16 75.5
g L/14 80.8
O L/14-336px |80.5

3. Learning Transferable Visual Models

From Natural Language Supervision
(Radford et al. ICML 2021)

You can learn a sentiment classification model

using contrastive image—text supervision




Overview

1. The Pixel Language Model
2. Text Rendering Matters
3. Going Multilingual

4. Historical Document Processing



Language Modelling with Pixels

ICLR 2023
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The Model

g

My cat GO enjoys eating warm oatmeal for
lunch and dinner.
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The Model

[ 16pixel x 16pixel patch ]

(o] caf Jo0 enjorb ekeiba Jach ofemtar [tof tnc] ofa Jinfer] |

[ Google Noto Fonts ] o Render Text as Image

[ PyGame / PangoCairo ] g}?

My cat G0 enjoys eating warm oatmeal for
lunch and dinner.

11



The Model

e Projection + Position Embedding B e
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The Model
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The Model

[ 16pixel x 16pixel patch ]
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The Model
Z - 00| en|
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[ Encoder }
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e CLS Embedding & Span Mask m patches Z
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Flexible Text Renderer

[ EmOJ| [My cat 7 loves pancakes (. and my duck & loves grapes #i§. JJ|

e | eft-to-right, right-to-left, and logosyllabic writing systems

HNEEREED, EEFRFOMERTEDD. oL ob Jus bl 557 6% T ] Juad 1ol o iyl Sl laig Ml ¢35l 8 kil b [ ]

e Word-level rendering
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Rendered Text is Compact

® PIXEL enCOd | ng prod uces Proportion of text that is encoded as k& subwords / patches.

sequence lengths that are at
least as long as as BERT.

o Universal Dependencies 0.10
datasets with human

reference segmentations 0.05 |

o No length penalty for
languages, unlike some
LLMs (Ahia et al. 2023)

0.00
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y \-

0 50 100
Length [Tokens/Patches]

150

Ahia et al. EMNLP 2023. Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models
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“Embedding” Layer

e Projection + Position Embedding Kl &
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“Embedding” Layer

e e e e e Shape = [seql_len, 768]
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1.

Visualization of Convolution Kernels

Some kernels learn about
the presence / absence of
any pixels.

Many kernels capture
horizontal strokes

Only a few kernels capture
curved shapes (likely due to
letters rendered across
patch boundaries)

BEISHRASNEENBRENEENE R N S
Evolution of Conv2D weights during pretraining step 10K-1M
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1.

Visualization of Convolution Kernels

Some kernels learn about
the presence / absence of
any pixels.

Many kernels capture
horizontal strokes

Only a few kernels capture
curved shapes (likely due to
letters rendered across
patch boundaries)
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Evolution of Conv2D weights during pretraining step 10K-1M



Objective Function

Linear into 16x16x3 pixel space

Layer Norm

Transformer Stack (8 Layers)
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Objective Function
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Linear into 16x16x3 pixel space

Layer Norm
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Objective Function

m
Mean square error loss over 1 g 2 S
[ ) T i J MSE := NYi E (X — X5 Xom) [ No Softmax normalization J

=1

A~ e |\ e T
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Linear into 16x16x3 pixel space

Layer Norm

Transformer Stack (8 Layers)
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A new type of generative model

g gni g
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100K steps 500K steps 1M steps
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Pretraining

English Dataset: English Wikipedia and Books Corpus
Masking: 25% Span Masking

Maximum sequence length: 529 patches (16x8464 pixels)
Compute: 8 x 40GB A100 GPUs for 8 days

Parameters: 86M encoder + 26M decoder

There is only 0.05% non-English text in our pretraining
data (estimated by Blevins and Zettlemoyer 2022)

The Great Wall of China (traditional Chinese: B 2 &3; simplified Chinese: 5 24<1H; pinyin: Wanli Changchéng)

18



Downstream Tasks

e Datasets: Universal Dependencies, MasakhaNER, GLUE, Zeroé

e Models: Parameters = Pretraining Data

86M English Wikipedia
PIXELgase + Bookcorpus
BERTsasE 110M —

CANINE-C 127M 104-languages
from Wikipedia

19
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Downstream Tasks

e Datasets: Universal Dependencies, MasakhaNER, GLUE, Zeroé

e Models: Parameters @ Pretraining Data
86M English Wikipedia
PIXELgase + Bookcorpus
BERTsase 110M — Similar pretraining setup
CANINE-C = 127M 104-languages Tries to solve the same |
from Wikipedia :
L problem using UTF-32 )

19



Dependency Parsing Results T

I prefer the morning flight through Denver

100
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(3, ]
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F1

2

(3}
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BERT UNK

BERT ®m PIXEL

ENG ARA COP HIN JPN KOR TAM VIE ZHO

0% 1% 94% 33% 46% 85% 82% 5% 73%
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ca:

Dependency Parsing Results T

I prefer the morning flight through Denver

BERT ®m PIXEL

100 ) e N\ “ )

A
75 A A
50 A
\4 v
25
1 v
0
ENG ARA HIN JPN

COP | KOR | | TAM | VIE | zHO

BERT UNK 0% 1% 94% 33% 46% 85% 82% 5% 73%

F1

[ PIXEL vastly outperforms BERT on unseen scripts }
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Named Entity Recognition in African Languages

Emir of Kano turban Zhang wey don spend 18 years for Nigeria

BERT = CANINE = PIXEL

100
75
3 50
25 II
0
ENG AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR
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Named Entity Recognition in African Languages

Emir of Kano turban Zhang wey don spend 18 years for Nigeria

BERT = CANINE = PIXEL

100
"\
75
= 50
25
0 ENG AMH HAU IBO KIN LUG LUO PCM SWA WOL YOR
—

PIXEL outperforms BERT PIXEL outperforms the
on the non-Latin script multilingually pretrained CANINE-C | ,,




GLUE: Sentence-level Understanding

BERT ®m PIXEL

MNLI QQP QNLI SST-2 COLA STS-B MRPC RTE  WNLI

100

7

(8}

5

o

Score

2

(8}

o

[ BERT outperforms PIXEL on English sentence-level tasks
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Aduvsrsarial attacks

e How well does PIXEL deal with orthographic text attacks?

Attack Sentence
NONE Penguins are designed to be streamlined
CONFUSABLE Pemguns are desigred to be streamlizzed

SHUFFLE (INNER)
SHUFFLE (FULL)
DISEMVOWEL
INTRUDE
KEYBOARD TYPO
NATURAL NOISE
TRUNCATE
SEGMENTATION
PHONETIC

Pegnuins are dnesiged to be sieatrnmled
ngePnius rae dsgednei to be etimaslernd
Pngns r dsgnd to be strmlnd

Pe‘nguins a{re d)esigned t;o b*e stre<amlined
Penguinz xre dwsigned ro ne streamllned
Penguijs ard design4d ti bd streamlinfd
Penguin are designe to be streamline
Penguinsaredesignedtobestreamlined
Pengwains’s ar dhiseind te be storimlignd
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Results

on Zeroe (SNLI)
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5\‘\’\. X i . *
m\,., 1 Se—a
\m/ =
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~
Keyboard typo Natural noise Phonetic Segmentation Truncate

Model
—&— BERTgase
—%— PIXEL

0 20 50 80
Attack [%]

0 20 50 80

Attack [%]

0 20 50
Attack [%]

80

0 20 50 80
Attack [%]

0 20 50 80
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Results on Zeroé (SNLI)
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Results on Zeroé (SNLI)
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Text Rendering Strategies for Pixel
Language Models

EMNLP 2023
. v I '
42 L E. Salesky P. Rust D. Elliott
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Text Rendering Matters

e QOur original text renderer produces many nearly-identical patches
o This is representation- and compute-wasteful

the {the the the the |[the [he the [he

Can we do better?



Alternative Rendering Strategies

(a) Continuous rendering (CONTINUOUS):

I must be growing smal again. [

(b) Structured rendering (BIGRAMS):

I |must begr owin |g smal | agai n [l
(c) Structured rendering (MONO):

I ujst| ble [griow ing [smal]l [ag ain.

(d) Structured rendering (WORDS):
‘I mq“st Hbe ’grc}wiﬂwg Hsm.bll ‘}ageain.‘.
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Alternative Rendering Strategies

(a) Continuous rendering (CONTINUOUS): — continuous ---- bigrams - mono ----- words
must be growing small again. [ 250

(b) Structured rendering (BIGRAMS): é 200k
[Q@@@E@DE@I} 2 150k

(c) Structured rendering (MONO): ‘;ii 100k

I must|ble griowing smalll again. ll &

(d) Structured rendering (WORDS): - A —
‘I mLﬂst Hbengq}wiﬂwg Hsm#all Hagaiin.‘. Ok 2k 1k 6k 8k 10k

Sentences observed
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GLUE (revisited)

MNLI

m BERT m PIXEL m PIXEL-BIGRAM

QQP QNLI SST-2 COLA STS-B MRPC RTE

Bigram text rendering produces better pixel models

WNLI

28



Scaling Down |

Better text rendering can create effective models at smaller scales
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Multilingual Pretraining for Pixel
Language Models

arXiv:2505.21265
» U T

I. Kesen J. F Lotz l. Ziegler P. Rust D. Elliott



PIXEL-M4

The capital of France is Paris.
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Text Classification on SIB-200
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Text Classification on SIB-200

+pretrained  * pretrained
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ARZ UIG URD BOD BEN HIN TAM TEL KIR RUS UKR DEU ENG FIN FRA TUR UZN ZHO JPN KOR ELL HEB HYE

Arabic Brahmic Cyrillic Latin CJK Other

Multilingual pretraining is very helpful for sentence classification
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Dependency Parsing
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Arabic

Multilingual pretraining helps for non-Latin script languages
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CJK
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Zero-shot Sentence Retrieval Analysis

e Encode the sentences from
the SIB-200 dataset in the
four pretraining languages
and measure the cosine
similarity between the
encoded data

e Multilingual pretraining leads
to better “semantic”
representation of text, but
English seems to be a pivot

0.8

o
]

o
)

Recall@5

©  —e— ENG-ZHO

—o— ENG-HIN
ENG-UKR

—e— HIN-UKR
—o— HIN-ZHO
—eo— UKR-ZHO
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PHD: Pixel-based Language
Modeling of Historical Documents

EMNLP 2023
e “, .. A
gE SihP — S ,.,,"‘i | . :‘
?3‘%;4 S : ‘ T L‘ )
N. Borens tein P. Rust D. Elliott | I. Augenstein

Warning: This part of the talk contains dataset samples that are racist in nature.



Historical Document Processing

e Worldwide efforts to digitize historic documents (Groesen 2015)
e Typical pipeline for enabling access is:

a. Scan documents into high-quality digital formats
b. Perform OCR on those documents (one-off process)
c. Search through documents using OCR annotations

What if we could do this without OCR?
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Caribbean Newspapers, 1718-1876

e (Collaboration with researchers that
are interested in tracking

newspapers notices about escaped
slaves

o What was the given name?
o What reward was offered?

o Who was the contact person?

e Dataset of 1.65M scanned pages
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PHD: PIXEL for Historical Documents

e Historical document-aware Pretraining

o Mixture of scanned newspapers and synthetic newspaper-like text
generated from Wikipedia and Bookcorpus datasets

o All input data is scaled to 368x368 and split into 16x16 patches
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Visual Question Answering in Newspapers

e Frame this as a Visual Question Answering Task

o Render the question

» How much reward is offered?

‘O N7 HBRTAS 7 Mislatto Doy (¥ Name
o Render the clipping on a canvas WV Dencts hetomgins 10 a yeuns M daely ate
rived from Uie Eafl-Indizg, abented himfelf on Mon-
say the zeth Inpbant, 2 ha ! on when e wene avway
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a Thidcer Frock and Wolteeat, Leather Ureeches,
NA and a blue Surtuiz i2eat, with = jed Crliar, .
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Boy, or wivs any Jntelligence where himaybe 1aken,
fhall ieceive n Reward of Three eas,. He Is
about five Feet high, with fhort jlack Hdir, not of
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N. B, If taken, to be brought to the Sign of the
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e /

e Train the model to predict the
label of the answer
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Surprisingly good performance compared to a model

trained on manually transcribed text
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Wrap-up



1.

Overall Insights

General-purpose transferable representations of text can be learned

directly from rendered text without any additional linguistic supervision
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Overall Insights

1. General-purpose transferable representations of text can be learned
directly from rendered text without any additional linguistic supervision

2. Careful consideration of how to structure the rendering of the text
(“tokenization”) is important: bigrams >> unrestricted rendering
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Overall Insights

. General-purpose transferable representations of text can be learned
directly from rendered text without any additional linguistic supervision

. Careful consideration of how to structure the rendering of the text

(“tokenization”) is important: bigrams >> unrestricted rendering

. Multilingual pretraining without any other architectural changes can
improve performance on both seen and unseen scripts
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Looking Ahead

(Data and groupings from Joshi et al. ACL 2020)

—
=)
=)

winners "% | [__Class | Speakers

Underdog---. ‘f.} 1.2B

Left-behind < () 30M
Hopeful ... . . 5.7M

& 1.8B

2.2B
2.5B

We need a clearer vision of who is the
target audience of tokenization-free
language models B e

‘ “Scraping

Labeled data (log)
— —
O_ =

t
=

aHhWON =0

10° 10" 10 10° 10° 105 105 107

We need a better definition of unseen language
o writing script / language family / orthographic similarity

Scale up the multilingual pretraining of pixel models
Better understanding of the type of language learned with pixels

Develop new methods for building pixel-token hybrids
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The Bigger Question

e Masked Language Modelling is classic distributional
semantics because it models the identity of a masked work,

given the unmasked context.

e Why is it possible to learn a good model by predicting pixels?

m
— E log p(wm’x\m) i (X —X’X )2
1 (3

meM M ; v
BERT: Masked Language Modelling PIXEL: Masked Autoencoding
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Joint Multimodal Processing

Y CLIPPO T\

Contrastive
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[ Transformer ]
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Tschannen et al. CVPR 2023. CLIPPO: Image-and-Language Understanding from Pixels Only.
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Patch and Text Prediction

e (Combine patch and token prediction

MSE loss
briow/n | nella g —
T™ 17T 7 T T T
Cross-attention
-
r Tt tTtTIrrTrTrTrerTeTOrTTTETTTD
i1ttt —
"1t T 1T 7 e T T
Image Encoder
1T 1T T 7 Tt 1T 1T 9

IEEEEIII@I@EEII@I@

Gao et al. 2024. Improving Language Understanding from Screenshots

Cross-entropy loss

| The | quick ||brown|| fox |[jumps| over || the | lazy | dog |
T : T j § i T T ) ¥ T

Text Decoder

T T T T T T T T T
| <s> | The | quick |brown | fox |jumps| over || the || lazy |

Text token embedings

Masked patch embeddings

Image patch embeddings via a linear projection
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Pixology

e What linguistic knowledge is learned by pixel language models?

100 - SentLen wC TreeDepth TopConst BShift
> " | | T
© : E : GO-Z 80 -
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Tatariya et al. EMNLP 2024. Pixology: Probing the Linguistic and Visual Capabilities of Pixel-based Language Models



Combining Pixels and Tokens

e Handle sub-optimally covered inputs using pixel representations

Happy birthday </s>

, bttt
| Decoder-only LLM )
— r T
Text Embedding J [ Pixel Fallback } [ Text Embedding |

f f bt f

Translate to English STeAfe I YHFHATT  <s> Happy birthday

Lotz et al. COLM 2025. Overcoming Vocabulary Constraints with Pixel-level Fallback
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Conclusions

e PIXEL is a different type of language model that tackles
the open vocabulary problem using rendered text

1. This enables high-quality transfer to different scripts

= New, unseen languages
= Different fonts in existing languages

2. Compact models with as few as 5M parameters
3. Multilingual pretraining improves performance
4. Natural interface to scanned documents
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